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Sommario

Le nuove piattaforme per il mobile computing, introdotte alcuni anni fa
hanno avuto un impatto notevole su tecnologia e società. Due aspetti tecnici
che hanno alimentato lo sviluppo del mobile computing e a loro volta sono
stati alimentati da esso, sono stati la maturazione della comunità del software
open-source e la disponibilità per molto produttori di silicio della proprietà
intellettuale di un’architettura di calcolo molto efficiente in termini energetici.
Come conseguenza dell’ampia diffusione del mobile computing, le comunità ac-
cademiche della computer music e del music computing, hanno messo a frutto
le conoscenze sviluppate nell’ambito del laptop computing per portare alla fior-
itura di numerosi progetti di physical computing.
In questa tesi di dottorato tutti questi aspetti vengono sviluppati e stu-

diati in maniera organica, con un interesse specifico per l’elaborazione del seg-
nale (DSP) nello strumento musicale digitale e la performance wireless su rete.
L’idea di una piattaforma di physical computing in grado di supportare il ruolo
di strumento musicale e connettersi ad altri strumenti viene elaborata. Pro-
cessori di segnale e algoritmi per l’industria musicale vengono analizzati da
una prospettiva tecnica e storica per definire delle specifiche tecniche. Sviluppi
innovativi nel DSP per la sintesi, il trattamento, il campionamento e la trasmis-
sione del segnale sonoro sono dettagliati Lo stato dell’arte per le performance
musicali in rete (NMP) viene riportato insieme alle sfide tecniche che questo
impone, in modo da definire le necessità da soddisfare per una piattaforma
embedded per la NMP wireless. Da questo approccio multidisciplinare sca-
turisce il progetto WeMUST (Wireless Music Studio), che investiga su alcune
delle problematiche attualmente riscontrate ed evidenziate in precedenza e ver-
ifica la fattibilità di realizzare un sistema di NMP wireless basato su soluzioni
hardware e software di largo uso.
Giunto lo sviluppo ad uno stadio soddisfacente, una prima versione del soft-

ware WeMUST è stata rilasciata ed un caso d’uso è stato mostrato in pubblico
nel luglio 2014 con la performance Waterfront, con musicisti su barche sulla
costa di Ancona. Questa occasione di valutazione del lavoro è servita anche
come riferimento per future fasi di sviluppo.
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Abstract

Since their inception, mobile computing platforms had a tremendous impact
on technology and society. Two key technical aspects that fostered mobile
computing and were further fed by its advancements are a mature open-source
software community and a power-efficient processor architecture intellectual
property (IP) accessible to many silicon manufacturers. In the computer music
and music computing academic community, developments of mobile computing
platforms, allowed for a blossoming of physical computing works stemming from
previous developments in laptop computing.
In this thesis all these key aspects are intertwined and studied with specific

interest in digital musical instrument signal processing and wireless network
performance. A physical computing platform that satisfies both requirements
and enacts both the role of an instrument and a link to other instruments is en-
visioned. Following the unifying trend in computing to fit all functionalities in a
single device, a prototyping embedded platform has been chosen for the twofold
aim. Digital signal processors and Digital Signal Processing (DSP) algorithms
for the musical industry are therefore studied from a technical and a historical
perspective, to look for the embedded platform technical requirements. Novel
achievements in DSP for sound synthesis and processing, sampling and trans-
mission are addressed. The needs and state of the art in Networked Music
Performance (NMP) are summarized to gather insight on useful features for a
wireless NMP system based on the embedded platform. This all-round design
approach resulted in the conception of WeMUST (Wireless Music Studio) a
project addressing several of the issues defined in the study phase and veri-
fying the feasibility of a wireless NMP system based on commercial hardware
and software solutions.
Once the development of WeMUST proved satisfying to some extent, a first

release of WeMUST and its tools has been publicly rolled-out and an application
case has been demonstrated in July 2014 with Waterfront, a novel wireless
performance between boats off the coast of Ancona, Italy. This occasion of
evaluation of the work served also as reference for future development.

All registered trademarks are property of their respective owner.
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Chapter 1

Introduction

An argument could be made, that - although of totally different nature - mu-

sic and technology are intertwined aspects of the same human ambition. The

first technical achievements in human history paved the way for a wealth of

new tools to help mankind with primary objectives, but they also offered new

ways to express himself in artistic invention, and of greatest interest here, cre-

ate sound and practice music. This happened well before modern Science was

born. Still, while in the last centuries physics managed to understand instru-

mental acoustics, mathematics introduced a wealth of concept useful for signal

processing and communication theory helped spread music on the whole planet

surface, a relevant part of contemporary music dialectic, debate and practice

is inspired by or takes place with technologists and craftsmen, rather than sci-

entists. Scientific breakthrough in the recent progress of musical ethics and

aesthetics has always been a guide on par with many other intellectual cur-

rents and findings, but in essence, it could be that in the development of this

Art, playing with technical inventions has a greater impact than recurring to

rigorous thinking. It may not be a coincidence that the verb used for a musical

instrument is to play. Indeed, curiosity and readiness made my PhD studies

cover several topics that needed to be addressed following debate with expert

in fields related to music technology, and, yet, they come out to be sufficiently

organic to be weaved in this essay following a thread: the embodiment and un-

embodiment of the musical act physicality, that is, the development of a physical

computing platform for sound synthesis and processing and the virtualization

1
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Chapter 1 Introduction

of the musical action through wireless network performance.

The thesis sweeps through different fields of current technological develop-

ment that have been studied and improved to fill in some of the gaps in current

music technology achievements. All these have been gathered together into a

single project that addresses several issues considered worth exploring in cur-

rent (experimental or traditional) music performance practice. The reader of

the thesis is therefore requested to forgive on the indulging on matters of the

human knowledge displaced too far away from each other.

1.1 Reading this thesis

The main focus of the thesis is on musical performance employing wireless

networking techniques. This field of research appears nowadays as a moor-

land, with very few contributions sparse in the last decade. The idea itself

may not be novel, but surely employing the wireless medium for networked

music performance (NMP) sounds difficult and unreliable. On the contrary,

it poses a number of challenges worth addressing, especially in these days of

steady wireless technology innovation. Once the signal wire is cut, the last

wire to cut is the energy supply: current computing architectures and energy

storage technologies allow for sufficient operation on mobile conditions, thus,

suggesting the viability of the wireless approach to NMP. The same stands for

weights and portability. These cues, were the starting point for WeMUST, the

Wireless Music Studio project, which is covered in this essay and is based on

existing communication standards, most notably, the IEEE 802.11 family (alsa

known by its commercial name WiFi®). However, to build up a prototyping

platform and address all the issues reported above and a few more, studies

have been conducted involving many subjects that were worth investigating

first, such as Digital Signal Processing (DSP) for Musical Applications (MA).

Many academic contributions have been proposed in this process. Finally, the

outcome of the WeMUST project is a tangible object (as required by thye

physical computing approach) for performance, thus, part of the studies also

cover embedded computing for music and digital music instrument making in

2
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1.1 Reading this thesis

general.

A summary of the chapters is given:

• Chapter 2 provides an introduction to musical signal processing, the de-

velopment of digital musical instruments and digital signal processors,

outlining some concepts in digital musical instrument design. It also in-

troduces general purpose computing platforms and gives motivation for

their use in digital musical instruments design;

• Chapter 3 gives a brief historical overview on networked music perfor-

mance (NMP) and then introduces challenges, technical issues and ap-

proaches;

• Chapter 4 is the focal point of the thesis, introducing the WeMUST

(Wireless MUsic STudio) project, its outcomes and the solutions found

to some of the technical issues reported in the previous chapters;

• Chapter 5 reports on several advancements in music signal processing

achieved by the author that directly address computational cost issues

and scalability to embedded platforms;

• Chapter 6 concludes the thesis with a discussion on future roads for phys-

ical computing in music, including foreseeable trends.

3
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Chapter 2

Embedded Computing for Musical

Applications

Nowadays a number of musical applications (if not all) rely on Digital Signal

Processing. Embedded systems perform DSP by means of specialized ICs (In-

tegrated Circuits), programmable processors such as Digital Signal Processors1

or more general purpose programmable processors. For this reason, this chap-

ter includes a brief timeline of digital musical instruments, the DSP circuits

and computing architectures. Moreover an overview about signal processing

for musical applications is given. One basic building block is pointed out and

implemented for a benchmark on a few reference platform for general purpose

computing. More specific signal processing algorithms targeting embedded

platforms are reported in Chapter 5.

2.1 Digital Musical Instruments: a Brief Timeline

Digital musical instruments evolved and derived their features from a few

archetypal architectures, most notably the digital computer and the analog

synthesizer, with a few exception in the more experimental areas of music

production. Those two are of opposite nature: the analog synthesizer in many

incarnations resembles the general model of many acoustic musical instruments
1along the thesis the acronym is used for both Digital Signal Processor and Digital Signal
Processing when not ambiguous, otherwise they are reported in extenso

5
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Chapter 2 Embedded Computing for Musical Applications

including the human voice, i.e. the source-filter model; the digital computer,

on the other side is inherently tied to a higher-level understanding of music

generation, related to the freedom available with programming, which allows

sound organization and ontology creation a priori from timbre crafting. This

dichotomy between the physically-inspired nature of the source-filter model

and the conceptual nature (Platonic in some sense) of computer music is some-

what bridged by the opportunities introduced in the last years by overcoming

the distinction between composing and executing, DJing and listening and

some technical novelties such as touch interfaces, fast (software, hardware and

mechanical) prototyping, digital manufacturing technologies, displays, wireless

communication and miniaturization. Novel instruments and interfaces do not

take inspiration from early electronic instruments (e.g. the keyboard synthe-

sizer, or the DJ turntable) and represent a synergistic synthesis of existing

functionalities (see e.g. the Kaoss instruments, half samplers, half effect pro-

cessors). This variety brings to a large semantic discordance in “organizing

sound” and its production. Memories, layers, patches, timbres, scores, orches-

tras, presets, performance, sample, these are a few of the terms used in modern

computer music and digital instruments to classify sound, its control and stor-

age - which is a crucial aspect and innovation of the digital instruments era.

Digital musical instruments history dates back to the inception of computer

music, after WWII, when a few notable composers, researchers and engineers

started employing mainframe computers as a resource to explore new fields in

contemporary music. Apart from the first computer-synthesized music experi-

ments in 1951 (Trevor Pearcey’s and Maston Beard’s CSIRAC2 computer, and

Cristopher Strachey program on the Ferranti Mark 13) that were just mono-

phonic execution of popular tunes, later experiments led to extremely inno-

vative forms of composition through computer programming. Without doubt,

the most influential scientist from this perspective was Max V. Mathews, who

in 1957 realized MUSIC, a programming language for music composition and

generation [3, 4]. From that moment on, computer music grew popular in the

2http://www.csse.unimelb.edu.au/dept/about/csirac/music/introduction.html
3http://news.bbc.co.uk/2/hi/technology/7458479.stm

6
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2.1 Digital Musical Instruments: a Brief Timeline

academia and music programming languages continued to be refined and cre-

ated. During these years, digital technology was still in its early stages, music

was generated off-line and equipment was too large and heavy to incarnate any-

thing close to a real musical instrument. While academic research progressed on

DSP algorithms and architectures, the first electronic musical instruments and

effects to become popular during the 1960s and 1970s were all-analog. The in-

vention of the transistor made the integration of oscillators, filters, modulators

and amplifiers feasible in a rather small space, thus analog voltage-controlled

synthesizers can be numbered among the first electronic instruments to be

portable and commercially successful. An early digital sampler was devised by

Bruce Haack, an inventive electronic musician who in 1967 showed his “Musical

Computer” on the American Mister Rogers’ Neighborhood TV show. In 1969,

Zinovieff, Grogono and Cockerell developed the EMS Musys system, based on

two 12-bit microcomputers, DEC PDP-8. Their London studio was the first

digital studio, controlled by the large machine.

In the 1970s, synthesizers could employ digital CPUs only to introduce so-

called memories or patches and connectivity to external units. It is the case of

Sequential Circuits Prophet 5, with a Zilog Z80 MCU controlling a full analog

signal path and 5-voices polyphony. Audio processing was not yet feasible. For

the sound synthesis, the instrument hosted DIP-package integrated oscillators

and filters circuits specifically made for the music industry, such as Solid State

Micro SSM2030 VCO (Voltage-Controlled Oscillator) or, in a later hardware

revision Curtis Electromusic Specialties CEM3340. In these years of mature

analog products and flourishing digital products the two aforementioned com-

panies CES and SSM were supplying components specifically intended for the

musical instruments market (together with electronic games or other applica-

tions). All the famous electronic instrument producers from Japan and the US,

as well as the smaller Italian ones, such as Crumar, Siel, Solton and the likes

employed these components in their instruments. This was possible due to a

favorable market4 and the lack - yet - of general purpose signal processors.

4Several successful products sold in large quantities (tens of thousands in some cases, or
even more for a handful of Japanese products, which is a lot for the music market).

7



i
i

“phd-thesis” — 2015/3/23 — 10:33 — page 8 — #34 i
i

i
i

i
i

Chapter 2 Embedded Computing for Musical Applications

At the end of the 1970s the miniaturization and progress of the digital tech-

nology made new instruments feasible. It is the case, e.g. of the Fairlight CMI,

the first polyphonic digital sampling system, based on a dual Motorola 6800

processor. Its street price was as high as £18,000. While digital samplers need

some signal processing (envelope generation, filtering, etc) in their basic form

they do not have a high computational cost, thus, for instance, one of the early

digital samplers, and of exceptional quality, the Synclavier I (1977), employed

a simple 16-bit ABLE processor. This was based on a transport-triggered ar-

chitecture, meaning that it only supports one instruction: MOVE, to move

16-bit data between functional units. The processor architecture, although in-

genious and scientifically challenging, never yielded large success in the silicon

industry. Bleeding-edge music composers and pioneers started employing dig-

ital microcomputers in the 1970s (see also Section 3.1.1). One very popular

microcomputer was the Cosmac Elf (1976) built around a RCA CDP1802 pro-

cessor [5]. The Elf input was represented by an array of toggle switches for

bit by bit programming and its hexadecimal output was shown in a two digit

7-segment display. One notable feature of this IC was its Q output, an output

pin that was set by a dedicated processor instruction, making it easy to em-

ploy it for communication or even tone generation, by toggling it at a specified

frequency. The first Philadelphia Computer Music Festival have seen a large

use of Elf microcomputers, in 1979. One last notable feature of this processor

is the ability to step down the operating frequency from its maximum down to

zero. Stopping operation of the CPU in this way does not reset operation and

it can be regarded as an early form of power saving.

A great breakthrough in digital sound synthesis was the use of FM synthe-

sis, patented by electronic composer and professor John Chowning, developed

around years 1967-1968, filed as a patent in 1974 [6] and later sold to Yamaha,

which in 1983 released the famous DX7 on a slight variation of the method.

This employed a 63X03, a variant of the Motorola 6800, and an additional

MCU, 6805 to scan the keyboard and panel. The sound synthesis was per-

formed with the use of a proprietary chip, YM21280 OPS as the FM operator,

running at 49096 Hz. The output of this chip was a 14-bit frequency value,

8
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2.1 Digital Musical Instruments: a Brief Timeline

with 4 bits indicating the octave and the remaining 10 a linearly spaced value

in the octave. The chip contained several LUTs (Look Up Tables), reversed

engineered in recent times through direct inspection of the silicon die.

The DX7 was one of the first keyboard synthesizers to include MIDI5 (Mu-

sical Instrument Digital Interface), a universal digital communication protocol

ratified in 1983 by a panel of music industry representatives. An early pro-

tocol implementation was devised and shown in 1981 by Sequential Circuits’

Dave Smith at an AES show and was later modified together and adopted by

Oberheim and Japanese companies Roland, Yamaha and Korg. The 1983 win-

ter NAMM show in the US saw the connection of an American Prophet 600

synthesizer and a Japanese Roland JP-6. The seamless connection of instru-

ments coming from such distant places on Earth was a significant event from

a symbolic perspective and a giant leap for music: not only new opportuni-

ties were unveiled for musicians, but barriers between different manufacturers’

equipment were finally broken.

The MIDI specifications were published in August 1983 and since then under-

went only minor additions and modifications. Currently MIDI is implemented

in almost any hardware and software instrument, and is often supplied through

USB connection, retaining the upper layers of the protocol.

In the 1980s digital chips for sound synthesis started spreading also on com-

puters, for gaming but also for sequencing: early personal computers had sound

cards with FM synthesis chips and software sequencers. The famous Cubase

DAW software, e.g, was released in 1989 for Atari and was MIDI capable.

Digital sampling was exploited as well, at first in the primitive form of

wavetable synthesis (by LUTs containing a waveform cycle or less) and later

in form of more complete sampling synthesis, employing larger chunks of audio

data.

The development of DSP techniques was at the base of two fundamental

synthesis methods: DWG (discussed in detail in Section 5.3) first formulated

in 1983 [7, 8], one of the most common physics-based sound synthesis tech-

niques and digital subtractive synthesis by alias-free oscillators [9, 10], one of
5http://www.midi.org/

9
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Chapter 2 Embedded Computing for Musical Applications

the first Virtual Analog outcomes, pioneered by a few academic articles and

showcased at the NAMM show in 1994 by Swedish company Clavia. Those new

synthesis methods fostered new areas of research in DSP and required specific

architecture for number-crunching: by 1990s the digital signal processors were

capable of handling the large number of operations required by these MAs, and

improved in the years.

With programmable DSPs and MCUs, know how can be saved for future

projects, and code reuse allows extra flexibility. In the digital era open-source

initiatives fostered new software and hardware design paths and accelerated

productivity. In years 2000s, the GNU/Linux operating system, originated by

Linus Torvalds and the GNU movement efforts, started being available for an

increasing number of embedded devices. Featuring low resources requirements

but providing higher abstraction from the hardware compared to many em-

bedded OSs, it was chosen as the base for control and management of several

heterogeneous systems comprised of MCUs and DSPs. One notable family

of products is the Italian digital organs Viscount UNICO, presented in 2004

and featuring a Linux-based ARM CPU and parallel DSPs for DWG physical

modelling of organ pipes. In 2005, KORG presented Oasys, based on an Intel

Pentium 46 and a "customized Linux", followed by the KORG Kronos in 2011

with an Intel Atom D5xx7 and a "custom OS over Linux". In the same year

Viscount introduced the Physis piano, with Linux running on an ARM and

managing 6 parallel DSPs.

In the first 15 years of the century most musical machines, from effects pro-

cessors and keyboards, to karaoke and DJ equipment started taking advantage

of modern DSP algorithms and thus require capable processors. A few high-

lights on DSP development are given below.

6running at 2.8 GHz, and including SSE2 instruction set, this processor was introduced in
2002, and had a TDP of 68W.

71.6-1.8 GHz, 13 W TDP, implements also SSE3.

10
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2.2 Digital Signal Processors in Musical

Instruments

As reported above, the first digital components used in musical instruments

were mainly microcontroller units, and custom VLSI digital chips (as in the

DX7). Some chips might be used to provide signal manipulation functions, e.g.

bit-slice, multiplication and accumulation. The need for many different ICs,

however, made integration hard for digital signal processing applications. How-

ever, the demanding requests of other applications, such as telecommunication

systems, radar and military, automotive and so on, eventually pushed the sili-

con industry to come up with commercially viable VLSI solutions with steadily

increasing performances. One shared definition of a DSP is a programmable

non application-specific processor with concurrent data and instruction access

(e.g. implementing a Harvard or modified Harvard architecture, as opposed

to a Von Neumann computer architecture). In this regard the first ICs to be

independent of a microcontroller or an external ROM and featuring a hardware

multiplier (fundamental to most signal processing task), a control memory and

a data memory were the NEC µPD7720 and the AT&T DSP1 both presented

first at the International Solid-State Circuits Conference in 1980. Later in 1983

Texas Instruments presented the TMS32010, based on a Harvard architecture

and capable of load-and-accumulate and multiply-and-accumulate instructions.

The subsequent generations of DSPs (e.g. Motorola 56000, also addressing

24-bit audio applications) added two simultaneous operands, increased bit-

depth and improved performances. At these times DSPs were programmed in

their assembly language and worked on a sample-by-sample basis for architec-

tural reasons. Their ALUs were fixed-point and a clock cycle could be about

0.1µs− 0.2µs.

In the 1990s DSPs started implementing more complex signal processing

instructions in hardware, such as the Fourier Transform or matrix and vector

operations. Homogeneous and heterogeneous parallelism was also implemented

by means of parallel cores on a same die or by supporting the DSP core with

a MCU core, such as Texas Instruments starting coupling TMS320C5x with

11
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Chapter 2 Embedded Computing for Musical Applications

ARM7 units. Power efficiency features, VLIW and SIMD instructions set were

added along the 1990s. From a developer’s perspective in the 1990s develop-

ment tools were implemented to accelerate the time to market. In 1990 TI was

providing a C code compiler, a debugger and starter kits with A/D and D/A

on board. In the next year the first DSP Educators Conference took place.

During these years, the first virtual analog synthesizers were presented, the

Nord Lead featuring a Motorola 56002 DSP (80MHz, 40MIPS, 24bit fixed

point), and some years later the Access Virus.

In 2005 British semiconductor IPs designer ARM Holdings, managed to in-

clude DSP capabilities to its ARM architecture family, by including NEON

128-bit fixed/floating-point SIMD instruction set on its ARM Cortex-A8 pro-

cessors (architecture ARMv7-A), in the fashion of MMX instructions on Intel

x86 processors (introduced in 1997). Of course, introducing new instructions,

register and data paths comes at high cost in terms of gates. On a Cortex-

A9, the RISC core requires 600,000 gates, while the NEON part alone requires

500,000. From an energy standpoint, with CMOS technology, more commut-

ing transistors increase the required power. However, employing specialized

instructions achieves a higher efficiency by decreasing the execution time com-

pared to employing RISC instructions.

Although the ARMv7 architecture and related are not meant for DSP-only

applications, they are a good candidate for MAs, thanks to the availability of

a floating-point unit and SIMD instructions, a large peripheral set for I/O and

the low cost. This will be discussed in Chapter 4 and Section 6.2.1. In any case

at the moment some demanding synthesis techniques, such as modal synthesis

or FDTD, require dedicated processors. The piano described in Section 5.3.3

employs modal synthesis and needs in the worst case 6 parallel TI C674x DSPs

for piano synthesis, while experiments reported by Bilbao et al. [11] make use

of a set of parallel GPUs for Finite Differences modeling.

Years 2000s have seen competition increasing with other companies such as

CEVA developing IP for DSP cores, Analog Devices producing the SHARC

series and other manufacturers entering the market such as Marvell, Tensilica

and more. By the early 2010s, however, many discrete DSP lines are retired

12
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or will not undergo development and Texas Instruments seems to be the only

manufacturer to feature a consistent roadmap and investments of DSP devel-

opment, at least in non communication-specific fields. This does not mean

that signal processing is not anymore of interest, or that the audio market is

neglected, on the contrary, automotive and mobile markets require ever more

challenging DSP algorithms. The fact is nowadays discrete DSPs are only 1/10

of the estimated DSP market, with the remaining part embedded into other

cores or ICs8. In May 2010, iSuppli determined a descending trend for the

discrete DSP market, with a pace of -8.2% yearly, while the processors market

was increasing by 4% every year9.

2.3 General Purpose Processors for Musical

Applications

By observing that the discrete DSP market is shrinking, while the global pro-

cessor IC market is growing, it is interesting to evaluate alternative embedded

computing architectures for music DSP. Cost-effective and widespread alterna-

tives are:

• GP CPUs, such as x86,

• FPGAs,

• GPUs,

• ARM architectures.

FPGAs are used for signal processing applications were a custom computing

architecture is required, but their cost, size and power requirements do not

make this solution attractive. GPUs are similar and complimentary to DSPs.

While they are able to process vector data in an extremely fast and efficient
8https://fwdconcepts.com/dsp-market-bulletin-111212/
9An interesting presentation adding to this small review can be found online by Fran-
cois Charlot http://www.slideshare.net/fcharlot/digital-signal-processor-evolution-over-
the-last-30-years
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Chapter 2 Embedded Computing for Musical Applications

way, they are meant for graphical processing, thus adapting their architecture

to audio-specific mathematical operation can be hard. Their peripherals may

not be meant for audio exchange, thus some mechanism must be employed

to get audio data in and out by means of external components (or the host

MCU if they are integrated in a SoC), for real-time usage. Much research has

been conducted on their use in the computational acoustic field by [11, 12]

which seems very promising. However, at the moment effective usage of GPUs

for musical instrument prototyping seems far from feasible for quick prototype

implementation.

x86 processors are already running any kind of signal processing applica-

tion, they are widespread, compilers are very efficient in optimizing code and

there is already a vast number of libraries, tools and code to reuse. One is-

sue with these platform is power. Desktop-class CPUs have TDP (Thermal

Design Power) figures of 50-150W which are not affordable in terms of heat

dissipation or are prohibitive in battery powered applications. Laptop-class

x86 CPUs have lower requirements, even less for the Atom x86 processors that

were originally targeted to stay below the 2W point (Silverthorne series, circa

year 2008), but are currently rated at 6-20W TDP. On the contrary, mobile

ARM platforms rarely surpass the 2W limit. Their performance is comparable

to laptop x86 processors, much code exists that can be reused and porting of

Linux distributions are widespread.

For reasons of cost, code reusability, availability of open-source kernels and

drivers, power efficiency, availability of development kits including the audio

chain, ARM-based platforms have been evaluated for prototyping. All the work

described in Chapter 4 is conducted on a board named BeagleBoard xM, based

on TI DM3730 ARM Cortex-A8 processor.

To assess the convenience of shifting computing on inexpensive ARM plat-

forms, a basic benchmark involving execution of sinusoidal oscillators is re-

ported here. The benchmark has been performed on four processors, a recent

x86 Core i5 PC CPU (in short x86-i5), a dated x86 Centrino Duo (x86-Duo), a

quite recent ARM Cortex-A7 (ARM-A7) and a dated ARM Cortex-A8 (ARM-

A8). The benchmark evaluates the maximum number of sine oscillators that

14
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can be computed in a certain time frame, i.e. that keep the RTF (real-time

factor) slightly below 1. No attempts have been made so far to benchmark

memory transfers, which are equally important, especially with sampling syn-

thesis. The implemented oscillator is based on the Chamberlin topology [13, 14]

of the second-order resonant filter, widely used in the music field. The code is

plain C, compiled with the GNU compiler with or without optimization (-O2

and -O0, respectively). A C listing including the oscillator function is reported

below. The results are reported in Figure 2.1. Some details are given about

the processors in Table 2.1.

A few comments can be outlined from this benchmark. It is quite clear that

the x86-i5 outperforms the other processors, being one of the more recent in

the test, and aimed at high performance, although in a laptop-class TDP. It

must be noted, however, that the performance of the Cortex-A7 would theo-

retically exceed that of the x86-i5 if their clock speed could match. Similarly it

reaches the same performance of a 9-years old x86 CPU, but would double it

reaching its clock speed. That would, however, increase (nonlinearly) its TDP,

admitting that the process and design allows the core to reach such high fre-

quencies. One last thing to note is the relatively low difference between the two

x86 CPUs, (a ratio between 1.5 and 1.7). Since the increased performance of

the x86-i5 is justified by the increased core frequency, the net performance in-

crease is low. This could be related to an inefficient use of the x86-i5 additional

features. One main difference with its sibling is the increased parallelism and

larger instruction set. While proper exploitation of parallelism may be a sub-

ject for further tests, an improvement in the instruction set (e.g. SSE3 versus

SSE4.2) is not easy to exploit or not feasible at all, as the Chamberlin oscillator

is based on simple operations. For code loops of this kind, such as filter kernels,

architectural features of use are those exploiting tight loops, together with the

compiler ability to automatically detect these and efficiently translate it into

machine language. The compiler ability to optimize code is clearly seen with

the Cortex-A7, which obtains a 4 times speed up when compiled with opti-

mization (probably the compiler optimization exploits the processor 4-threads

parallelism capability). The Cortex-A7 code, when compiled with optimization,
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Chapter 2 Embedded Computing for Musical Applications

proves extremely efficient in terms of energy, given its low TDP, in providing

laptop-grade performances. The author believes that higher values can be ob-

tained from the processors from careful optimization and parallelization. In

that regard, early experiments with OpenMP compiler directives showed the

Cortex-A7 performance to increase of at least a factor 2 by exploiting paral-

lel code execution. Further investigation is, however, required for a detailed

evaluation.
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Figure 2.1: Benchmark results from the implementation of Chamberlin oscil-
lators on the four processors described in Table 2.1. Benchmarks
are executed with frequency scaling disabled and maximum CPU
clock, in repeated batches of tests in order to discard outliers, with
highest userspace process priority. All the tests perform processing
at 44100 Hz.
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2.3
G

eneralPurpose
Processors

for
M

usicalA
pplications

x86-i5 x86-Duo ARM-A7 ARM-A8

Core

Core i5-3210M Core Duo T2500 ARM Cortex-A7 ARM Cortex-A8
2 cores 2.5 GHz 2 cores 2 GHz (Allwinner A20) (TI DM3730)

(4 threads) (2 threads) 2 cores 1 GHz 1 core 1 GHz
(4 threads) (1 thread)

L1/L2/L3 Cache 32KB/256KB/3MB 32KB/2MB/N-A 32KB/256KB/- 64KB/256KB/-

Instruction Set x86 64-bit x86 32-bit ARMv7 + Thumb-2 + ARMv7 + Thumb-2 +
VFPv4-D32 VFPv3

SIMD SSE4.2 SSE3 NEON NEON
Process 22nm 65nm 55nm 45nm
TPD 35W 31W N/A 1.9Wa

DMIPS (estimate) 49300 13600 1900,2900 2000 (declared), 1138b

MFLOPS (estimate) 36400 10000 N/A 500c

Transistor countd 634106 151106 N/A N/A
Launched Q2 2012 Q1 2006 Q4 2012 Q4 2010

Table 2.1: Information about the processors used in the benchmark. Please note that information about DMIPS
(Dhrystone instructions per second), MFLOPS (Whetstone floating point instructions per second) and
transistor count (not to be confused with gate count and highly dependent of the memory) are estimated
or taken after comparison from different sources and are only indicated for the sake of a brief comparison.
Sources reporting data not compatible or substantially different from the expected numbers have been
discarded.

acalculated from datasheet worst case values.
bhttp://processors.wiki.ti.com/index.php/Android_Comparative_Benchmarks
chttp://processors.wiki.ti.com/index.php/Android_Comparative_Benchmarks
dUnofficial estimates based on different sources available online17
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Chapter 2 Embedded Computing for Musical Applications

void benchmark1 ( timespec * tStart , timespec * tEnd)

{

int ncycles = nOsc;

size_t len;

float * op = flovec ;

clock_gettime ( CLOCK_REALTIME , tStart );

while (ncycles --)

{

len = frameSize ;

op = flovec ;

while (len --)

{

sinZ = sinZ + filtCoeff * cosZ;

cosZ = cosZ - filtCoeff * sinZ;

*op++ = offset + amp * sinZ;

}

}

clock_gettime ( CLOCK_REALTIME , tEnd );

return ;

}

Listing 2.1: Listing of the code implementing the Chamberlin oscillator

18
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Chapter 3

Networked Music Performance

State of the Art

One interesting field in music research is that of networked performance. His-

tory and challenges about this rather recent research branch are given in this

chapter.

3.1 Networked Music Performance: A Brief

Timeline

Transmitting music over a distance by technological means was accomplished at

the outset of telephone and radio technologies, for technological display. And

probably for the sake of annoyed bourgeois mistresses too. One of the first

wired music transmission was possible due to Thaddeus Cahill, inventor of the

Telharmonium (patent no. 580035, 1896), an “apparatus for generating and

distributing music electrically”, which since 1906 was employed in performances

and could drive 15,000 to 20,000 telephone receivers, according to its main

capital investor, Oscar T. Crosby [15]. Its demise was soon to come1, as radio

broadcast was going to spread in the subsequent years. And annoyed mistresses
1Cable radio was anyway employed all along the 20th century, with a varying degree of
success from country to country and different developments. Its main advantages over
radio transmission are a more capillary reach, a higher quality compared to AM trans-
mission and reduced costs compared to digital transmission. Music broadcasting services
by means of cable radio are still in use in several countries including Italy.
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Chapter 3 Networked Music Performance State of the Art

were not ready for electronic music, yet.

The first radio broadcast dates back to 1910, with an experimental transmis-

sion of Mascagni’s Cavalleria Rusticana and Leoncavallo’s Pagliacci featuring

the Italian tenore Enrico Caruso from the Metropolitan Opera House, in NYC,

USA. The amplitude-modulated broadcast, provided by the American inventor

Lee De Forest’s Radio Telephone Company had some issues, especially with

the scarce microphone signal loudness, but the path was set. In Figure 3.1 a

New York Times advertisement for the radio (called wireless, despite De For-

est’s preference for the former term) is shown. Although other musical wireless

transmission were experimented before2, the one from 1910 was the first to

address a public.

Despite the long history of music broadcasting, music performance over a

distance has a much more recent history. Radio modulated waves had an influ-

ence over John Cage, who is credited by some authors to be the first composer

for a NMP piece [16], with his “Imaginary Landscape no.4 for Twelve Radios”

in 1951 (see also [17]). However disputable whether this can be considered an

NMP piece, it is surely one of the first human attempt to explore musical in-

teraction at a distance. The same author in 1992-1993, composed Helikopter-

Streichquartett a string quartet piece to be played on four helicopters. The

piece is the third scene of the opera Mittwoch aus Licht. The musicians are

separated aurally and visually, and are synchronized by a click-track and do

not hear each others, while the audience can see and hear all of them through

audio and video signals transmitted from each helicopter. Networking was first

employed by Max Neuhaus in 1966 in his pieces for public telephone networks.

In Public Supply I

“he combined a radio station with the telephone network and created a two-

way public aural space twenty miles in diameter encompassing New York City,

where any inhabitant could join a live dialogue with sound by making a phone

call. Later, in 1977 with Radio Net, he formed a nationwide network with 190

radio stations.”3

2most notably, the one from Dr. Nussbaumer at the University of Graz, in 1904, who yodeled
an Austrian Folk song from a room to another by means of a receiver and transmitter.

3from Max Neuhaus official webpage.
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Figure 3.1: An advertisement of wireless music well before the WeMUST
project.
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Chapter 3 Networked Music Performance State of the Art

3.1.1 Early Computer Network Experiments

Computer networking experiments in music were introduced by the League of

Automatic Music Composers (LAMC), an experimental collective formed by

San Francisco Bay area musicians John Bischoff, James Horton, Tim Perkis,

and others. The production of the LAMC was improvisational and the group

was open. The group recorded music in the years 1978-83. The LAMC ex-

perimented with early microcomputers, and also very primitive computer net-

working. Specifically, they employed multiple MOS KIM-1 microcomputers

programmed by themselves in the 6502 CPU machine language, inputting the

assembly by means of a numeric keypad. Programs were stored in audio cas-

settes. Without getting into the aesthetic and compositional aspects of the

LAMC experience, it is of interest here to report on the technical details. The

microcomputers were interconnected through parallel ports or interrupt signals,

directly handled by the microcode written by the composers. No standard net-

working was employed. The interaction was based on musical representation

data, later fed to analog synthesizers or direct D/A for sound synthesis. The

flier from an early concert from band members Bischoff, Behrman, Horton and

Gold, depicted in Figure 3.2 shows the data path and algorithms employed

during the then-upcoming event. This picture is still quite representative of

laptop orchestra performances taking place nowadays. Please note that audio

signals were not transmitted digitally.

In [18], Bischoff, Gold and Horton, report on another performance taking

place at the same venue in July 1978, where three KIM-1 are interconnected in a

different fashion and output sound through direct D/A or a 8253 programmable

interval timer chip. The interconnection is made through serial or 4-bit parallel

ports.

The LAMC proposed the term Network Computer Music for their perfor-

mances. Such performances provided the basis for the typical laptop orchestra

paradigm, with different units exchanging musical or audio data which are sub-

sequently processed by other units for synthesis or manipulation. Notably, the

setup would algorithmically generate music and sound in a deterministic but
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Figure 3.2: Reproduction of a flier publicizing a concert at the Blind Lemon in
Berkeley, USA in Nov. 1978. The flier features a diagram of the
data paths between computers and indicates the musical algorithm
running at each microcomputer.
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unpredictable way, thanks to the feedback nature of the system. The com-

posers themselves claimed to be influenced by some of the intellectual currents

of the time, suggesting that complex phenomena could emerge from the inter-

connection and interaction of simple components. By the way, it is worth citing

some of this scientists and writers since their writings were necessary to much

computer music theory and practice, still influencing laptop orchestras and

NMP composers: Ilya Prigogine (complex system theory and self-organizing

systems), Warren S. McCullough (Neural Networks), Gregory Bateson (cul-

tural ecology), John Holland (genetic algorithms). More introspection on the

LAMC can be found on a document written by Perkis and Bischoff available on

the Internet “The League of Automatic Music Composers 1978–1983” 4. After

the LAMC stopped its activities in 1983, due to Jim Horton’s health problems,

Perkis and Bischoff followed on the same path and worked on a digital system

interconnection interface for musical practice called The Hub, which eventually

led to the creation of a stable group of performers with the same name. The

KIM-based Hub had four UARTS to allow four players to network using 300bps

serial connections. This central unit allowed for an easier connection (during

the LAMC days the computers were connected by directly wiring and solder-

ing the machines) and standardized format for data exchange. The musicians

would, in fact, employ a shared memory (nicknamed “The Blob”) where to

store data. This was referred to as “blackboard system” and allowed for asyn-

chronous data exchange. The hub would keep information about each player’s

activity accessible to other players’ computers. As reported in [19], after the

1985 Network Muse festival held in San Francisco, featuring Bischoff, Perkis

and more artists, The Hub collective would develop and add distance to their

networked performances. In a series of concerts in 1987 six musicians would

play in two different venues in New York City, split into two groups, connected

through a telephone line via a modem. The technical effort was considerable,

but successful, although one of The Hub members, Gresham-Lancaster in [20]

comments

“Although the group performed at separate locations a few times, it created
4http://www.newworldrecords.org/uploads/fileIXvp3.pdf
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its strongest and most interesting work with all the participants in the same

room, interacting directly with each other and with the emergent algorithmic

behavior of each new piece”

With the advent of MIDI and software sequencers, in 1990, Gresham-Lancaster

and Perkis designed a MIDI-based Hub, where each musician’s machine was

assigned a MIDI port and MIDI messages were employed to exchange data.

This way each musician could address privately each other machine, adding

flexibility. At the end of the 1990s the Hub members explored the use of the

Internet as a means to develop their network computer music experiments.

Again, the comments by Gresham-Lancaster are not entirely positive,

”In the only test case so far, two of us performed from each of three sites

[...]. This formidanle test actually ended up being more of a technical exercise

than a full-blown concert. [...] In this case, the technology was so complex that

we were unable to reach a satisfactory point of expressivity.”

Later in 1997, The Hub musicians were asked for a new remote performance,

which was called “Points of Presence”, a live performance produced by the

Institute for Studies in the Arts (ISA) at Arizona State University (ASU),

linking members of the Hub at Mills College, California Institute for the Arts,

and ASU via the Internet. Communication technology was not mature for

musical usage at the time and the experience reported by member Chris Brown

with networking at a distance was not adequate enough, as he explains in an

article 5:

“... the performance was technically and artistically a failure. It was more

difficult than imagined to debug all of the software problems on each of the

different machines with different operating systems and CPU speeds in differ-

ent cities. In part, because we weren’t in the same place, we weren’t able to

collaborate in a multifocal way (only via internet chats, and on the telephone);

and in a network piece, if all parts are not working, then the whole network

concept fails to lift off the ground. We succeeded only in performing 10 minutes

or so of music with the full network, and the local audience in Arizona had to

be supplied with extensive explanations of what we were trying to do, instead
5http://crossfade.walkerart.org/brownbischoff/IndigenoustotheNetPrint.html
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of what actually happened. The technology had defeated the music. And after

the concert, one by one, the hub members turned in their resignations from the

band.”

3.1.2 Current Networked Music Performance Trends

While at the beginning of the 2000s The Hub collective slowed down its activ-

ity, similar experiences started being common practice and nowadays laptop

orchestras and NMP are widespread. The LAMC and The Hub experiences

were fundamental for the development of current computer music performance.

Following their activities these two important lines of music research, namely

the laptop orchestra paradigm and the networked music performance, were cre-

ated. They are both interesting as laptop orchestras may employ networking

as well. Tens of music schools, universities and conservatories run a laptop

orchestra. It is not by coincidence that many tutorial books on Computer

Music, host a section on Networking or Laptop Ensembles. The Viennese

Farmers Manual in 1995 formed a multi-laptop ensemble, while MIMEO (Mu-

sic In Motion Electronic Orchestra) mixed acoustic instruments and computers

from 1997. An extremely interesting ensemble for the purpose of this thesis

is PowerBooks_UnPlugged, a collective of varying number of musicians only

employing laptops. Not thriving into the details of their very interesting aes-

thetic, a point to highlight is the use of laptop and wireless networking to share

data, algorithms and more. In the last ten years ensemble laptop performance

has become common in the literature and a plethora of papers dealing with

the aesthetics, the composition techniques or the software employed are pub-

lished yearly on the proceedings of computer music conferences. Stable laptop

orchestra are based in Princeton (PLOrk), Stanford (SLOrk), University of

Colorado Boulder (BLOrk), Dublin, Huddersfield, Virginia Tech (L2Ork), etc.

although not all these laptop orchestras employ networking. For more historical

information read, e.g. [21].

Gathering information regarding the technical setups these orchestra employ

for their performances is not trivial, as most often they are barely cited or
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neglected in favor of the aesthetic aspects. In the literature, technical aspects

are often disregarded as computer musicians and composers prefer to focus

on the artistic aspects and rely on widely adopted technology. This, however,

has led to complete withdrawal of challenges offered by the new technologies,

such as audio streaming between performers, the use of wireless networking,

off-stage performance (with the notable exception of PowerBooks_UnPlugged

and few others), the shift from laptop to embedded/embodied instruments and

more.

On the other side, acoustic networked music performance is relegated to a

niche in the literature. There are relatively few occasions for acoustic NMP,

due to technical issues, albeit the human interaction potential is much higher

than that available in a networked laptop performance [22, 23]. To address this

some researchers are experimenting the use of visual cues in laptop ensembles

introducing functionalities in the software employed by the performers [22, 23].

On the contrary, a purist approach is the use of high-bandwidth, low-latency

fiber links allocated on purpose, which, although available at few institutions,

provides much insight for research. Needless to say, the effort and challenges

of this kind of NMP are numerous. Experiments have been going on both

on LAN and WAN since more than a decade. Technically speaking, the first

consistent attempt to address NMP over the Internet was conducted by the

SoundWire group at CCRMA starting from year 2000 [24], which introduced

bidirectional uncompressed audio streaming at low latency, employing the US

Internet2 network. At McGill, the Ultra Video-Conferencing Research group

started reporting about a similar approach, also including video, from the same

year [25]. A first wave of experiments were spun in 2000 and following years,

followed by a period of decay in the research community interest [16]. After

a few years interest in Internet NMP started again to grow and maintained

quite stable till nowadays. In Europe, the LOLA project [26] was conceived by

GARR (the Italian research institutions network) and G. Tartini Conservatory

of Trieste (Italy) in 2005 and developed since 2008 and now is growing its

network of users6.
6http://www.garrnews.it/index.php?option=com_content&view=article&Itemid=235&id=265:lola-
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Besides the few aforementioned projects focusing on technical improvement,

and although technical progress in communication technologies is highly rel-

evant to NMP, most of the development efforts from the music computing

research and artists communities have gone into software architectures and

frameworks for NMP [27, 28, 29] or analysis and speculation of the NMP

paradigm and aspects of Human-Computer Interaction [30, 31, 32]. Finally

psychoacoustic studies related to the effect of latency on synchronization and

tempo keeping have been addressed by several authors [33, 34, 35, 36]. Some

more technically oriented works of recent publication deal with packet delay

reduction by direct access to the network hardware [37] and low-latency error

concealment [38].

3.2 Technical Issues in Networked Music

Performance

So far, all the NMP categories have been addressed, to give a historical per-

spective. However, those contexts of peculiar interest in this thesis are those

involving technical challenges, such as those where audio data is transferred in

real-time, through LAN or at remote locations, e.g. through the Internet. All

these research efforts generally rely on a very reliable link for audio (and often

video) transmission, the Internet2 in the US and GEANT network in Europe.

These are fiber networks connecting selected institutions (such as Universi-

ties) with high bandwidth (generally > 1Gbit) and low-latency, by manually

routing the signals, reducing the number of switches in the path and assign-

ing a high QoS to the audio/video signals. Both the LOLA and SoundWire

projects designed their own applications for signal transmission. Stanford’s

CCRMA SoundWire group designed Jacktrip, detailed in Chapter 4, a simple

multi-platform application for audio transmission. LOLA designed a perform-

ing Windows application sampling audio and video at extremely low-latency.

The LOLA software is very hardware dependent, but allows for total latencies

il-conservatorio-da-il-la-all-innovazione
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of a few milliseconds also for the video signals. The project has a focus on the

video latency and quality, to improve the interaction between musicians with

clear and quick visual feedback.

The aforementioned projects mostly deal with NMP on highly reliable links.

Although they stand as a reference for NMP and provide research insight on

human interaction in music, they remove constraints typical of more common

network infrastructures. The approach they use for NMP is called by Carôt

et al. [16] RIA (Realistic Interaction Approach) or Realistic Jam Approach

(RJA). In [39] many different approaches to NMP are reported, namely:

• Realistic Interaction Approach (RIA),

• Master Slave Approach (MSA),

• Laid Back Approach (LBA),

• Delay Feedback Approach (DFA),

• Latency Accepting Approach (LAA),

• Fake Time Approach (FTA).

The RIA is the most demanding, as it tries to simulate the conditions of a

real interplay with the musicians in the same space. The general latency thresh-

old for this approach is set by Carôt at 25 ms for the one-way delay (or latency),

following an early technical report from Nathan Schuett at Stanford in 2002

[40], although more accurate studies exist in literature which suggest slightly

different (but comparable) values. In the MSA, a master instrument provides

the beat and the slave synchronizes on the delayed version that is coming from

the master. The audio is in sync only at the slave side, while the master does

not try to keep up with the slave’s tempo, but he can barely get a picture of

what is going on at the slave’s side, trying not to get influenced in his tempo

by the incoming delayed signal. Clearly, the interaction gets reduced in this

approach, but the acceptable latency increases. The Laid-Back-Approach

is based on the “laid back” playing manner, which is a common and accepted

solo style in jazz music. Playing “laid back” means to play slightly behind the
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groove, which musicians often try to achieve consciously in order to make their

solo appear more interesting and free. Similarly to the MSA, at the master

side the beat is built and at the slave side, a solo instrument can play. At

the master side, the round trip delay, if higher than 25 ms but below 50 ms,

creates an artificial laid back style of playing. LBA of course doesn’t work for

unison music parts in which both parties have to play exactly on the same beat

at the same time. A commercial software Musigy exist that implements LBA.

A DFA, tries to fill the latency gap between the two ends by introducing an

artificial delay in the listening room at the master end (if one of the ends have a

master role), or at both ends (if interplay is not hierarchical). In the first case,

e.g., delaying the master’s signal in the room allows to make it closer to the

slave’s delayed signal. Similarly for the non-hierarchical case. The approach

however, introduces a latency between the user action (e.g. key press) and

aural response (in case of an electronic instrument) or simply adds a delayed

version to an acoustic instrument, which can deteriorate playing conditions,

however is suitable with turntables or sound sources with little human inter-

action. A commercial software, eJamming, employs this approach. The LAA,

simply neglects synchronization and is used for contemporary avantgarde mu-

sic, music with very low timing constraints or computer music which employs

the network as part of the performance. The SoundWire group promoted this

approach with several performances of contemporary music.

Finally, an approach that accepts latency but allows for tempo (but not beat)

synchronization, is the FTA. In this case the latency is artificially adapted to

be one measure or multiples. This way, any performer plays on the previous

measure executed by the other performer. This approach requires a tempo

to be known a priori and fixed. A further hypothesis is needed, that the

music does not change drastically from measure to measure, which is the case

for many improvisational genres, such as blues, funk, etc. The Ninjam open

source software employs this approach. For a different, more aesthetics-related

classification of NMP, refer to [19].
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3.2.1 Dropout

Several technical difficulties to overcome are outlined in this section, in order

of importance. Audio dropouts, i.e. loss of audio packets, must be avoided by

any means, since a regular audio flow is the mandatory requirement for audio

transmission. Source of audio dropouts are manifold:

• loss of packets along the route

• late arrival of packets at the receiving end

• loss of transmitter and receiver audio clock synchronization

• failure in the scheduling of the audio capture or playback process

Loss of packets is often solved in networking applications by triggering a new

transmission after a certain timeout time has passed. This is done, e.g. in the

TCP transport-level protocol, or in wireless protocols it is done at lower levels

when the received packet checksum is incorrect. However such procedures

require time and are not suitable for time-critical application such as NMP

(unless transmission time is � than the deadline imposed by audio buffering).

Furthermore, in NMP the only viable solution is to trust the network robustness

to failures and losses or to apply some redundacy, in order to greatly reduce the

probability of lost packet. Under the hypothesis of a random distribution for

packet loss, redundacy can be exploited. However, if the losses are correlated,

e.g. due to a link prolonged failure, redundacy provides no improvement.

Packets may also arrive at the receiver after the time they should have been

sent to the audio card for playback. This is discussed in Section 3.2.2. More-

over, when the clock rates of the transmitter and receiver audio cards are not

synchronized, packet loss may occur as described later in Section 3.2.4.

Finally, one of the two machines, may fail in correctly scheduling the audio

processes, so that the audio card is not timely supplied with or read for new

audio data. Issues with process scheduling is briefly recalled in Chapter 4,

where a practical implementation of audio capture and playback under a Linux

operating system is described.
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Unfortunately, even with a good NMP deployment and best networking con-

ditions, it is a good practice to consider occurrence of dropouts. Loss conceal-

ment is a good practice to avoid all the dropouts due to the network and clock

issues. For this reason many audio coding and decoding algorithms also in-

clude error or loss concealment. Indeed, when dropouts cannot be avoided, the

last tool to resort to is psychoacoustic masking. Currently, the OPUS codec

(formerly CELT), is widespread in audio streaming application for its very low

delay (less than 10 ms), objective audio quality and loss concealment [41].

Errors can be concealed too, and though communication technologies are

nowadays very robust to errors, a packet may still get corrupted. Generally

packets containing errors (which are calculated through checksum or similar

mechanisms) are discarded at the receiver end, however, some transport proto-

cols such as UDPlite allow the user application to forward a corrupted packet

for further error correction or concealment in software.

While planning a NMP deployment, it is a good practice to figure out an up-

per bound to dropouts during a session. A strict bound could be zero dropouts

tolerated for an entire session. A more loose constraint may be q dropouts per

session duration s, i.e. a probability

pt ≤ q/s. (3.1)

In Section 4.7, results are reported for packet loss over a wireless link. In

that case the PLR, i.e. Period Loss Rate is reported, that is the rate of audio

buffers that are lost, which is more psychoacoustically meaningful than network

packets. An adequate psychoacoustic research work could investigate further

on the topic, to link PLR to perception of glitches from the audience. It is

possible, e.g. that the loss of two consecutive or very near audio periods is

perceived as one glitch. Furthermore, the audience may not expect dropouts

at first, thus, cognitive effects may make the listener unconsciously discard a

dropout.
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3.2.2 Latency

As reported above, a variable amount of latency is inherent to NMP and deter-

mines the feasibility of the performance and the approach to consider. Along

the thesis, only the RIA approach is considered, being the most technically

challenging and requiring the lowest possible latency. Where not otherwise

specified latency is defined as the delay it takes for the sound to reach the

remote listener from the source, while the Round-Trip Time (RTT) will be

referred to as the time the audio takes to travel from the source to the remote

end and back to the source. The RTT is important in assessing the ability of

a NMP setup to build an interactive interplay between musicians.

As reported above, Carôt takes the 25 ms figure as a threshold for latency

in RIA, drawing from [40]. There are, however other studies yielding different

values and points of view. First and most importantly, most studies conclude

that the tempo change slope can be fitted with a linear model to a good ap-

proximation, thus, with increasing delays the tempo decreases [33, 42]. In

[43] a simple model for human performer tempo deceleration based on perfect

memoryless tempo detection is first assumed and then proved inaccurate in

predicting human performers in an NMP context. The model assumes that

tempo M decreases at each round according to

M(n) = 60
c0 + nd

(3.2)

where c0 = 60/M0 i.e. the quarter-note interval in seconds with initial tempo

M0, n is the quarter note sequential number and d is the delay imposed by the

network. A steady tempo would be kept, following this model only for d = 0.

Tests proved humans to perform differently than the memoryless model. For

this reason Driessen et al. [35] investigated on human player modelling in the

delayed performance scenario, following coupled oscillator theories, summarized

in their paper. By fitting data a good model was found to approximate the

human player behavior, i.e.

M = M0 − kM0d (3.3)
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where the constant k is found to be k ' 0.58 from data fitting. The authors

hypothesize that results obtained with simulated NMP setups are probably

to be found in an acoustic environment where the subjects are situated at a

sufficient distance to impose propagation delays similar to those of an NMP

setup. The reader must not forget that given the sound propagation speed in

STP conditions each meter adds approximately 3 ms delay. In an orchestra,

for instance, a maximum of 46 ms is reached between the most distant players

(hence the need for a conductor as a visual cue).

In [33, 34] it is found that at delays ≤ 11.5ms the tempo accelerates. Farner

et al. [42] report the same conclusions. Values are however different. In [42]

musicians and non-musicians are discovered to have different thresholds of ac-

celeration, respectively 15 ms and 23 ms. It must be noted, however, that

the musicians were subject to a complimentary rhythm task (see Figure 3.3)

while the non-musicians performed the same rhythmic pattern. It is unknown

whether this difference was relevant to the results. Imprecision in timing was

also evaluated in this study and delays over 25 ms were found to introduce

imprecision. Acoustic conditions were relevant to imprecision: anechoic condi-

tions imply a higher degree of imprecision, while room-reverberant conditions

imply a slightly lower tempo.







24
24


 

 


Clapper B

Clapper A

Figure 3.3: Score of the clapping pattern used in Farner’s and Chafe’s comple-
mentary rhythm tests.

All the aforementioned papers conducted tests at 90 BPM. Other tempos are

worth investigating to obtain a more general model. A last related study [36]
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reports results similar to the above, and states that until 60 ms the performance

can endure harmoniously, breaking down only over that value.

* * *

After this brief report on psychoacoustic findings related to latency, what

are the factors that introduce latency in an audio link? With current audio

equipment, one unavoidable source of latency is that related to audio buffering

after or before the A/D and D/A conversion. The A/D and D/A converters

are explicitly designed to convert audio in real-time (the conversion time is

totally negligible in this context), however, the issue is with the data storage

and buffering. Since in most modern networking technologies data is exchanged

in packets and computing architectures are more efficient with chunks of data

- rather than on a sample-by-sample basis - the only feasible way to treat

audio data in this field is to store and exchange buffered data. The buffer size

and the sampling rate determine a blocking time, or a buffer time, which

delays operations such as transmission. Thus, for a simple audio link, with one

end acquiring and transmitting, and the other receiving and playing it back,

a minimum latency is imposed by one buffer time at each end. The buffer is

filled of several audio slots (at least two), called periods. Typical values for

the period size with modern computing architectures are 128 to 512 samples

at 44.1 to 96 kHz, i.e. 1.3 to 11.6 ms. The buffer time is not hard-wired, but

depends on a trade-off between CPU time and latency, since short buffer times

lead to a higher interrupts frequency, and more operating system overhead.

Embedded hardware for music employ shorter period sizes, e.g. 16, 32 or 48.

For the sake of comparison, a digital mixer, typically imposes a input-output

delay to the signal of 1.6 ms or 0.8 ms, while many digital keyboards output

sound at 32 kHz and a period sizes of 16 to 64 samples.

On WAN the most obvious addendum to latency is the propagation delay.

Depending on the medium, be it copper wire or optic fiber it can be somewhere

around 0.7 times the speed of light in void, i.e. about 5 ms every 1000 km.

Unfortunately, the routing between distant locations can be much longer than

the direct path. With distances below 100 km or LANs, however, the switching
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delay can be much more relevant than the signal propagation, introducing a

time-varying delay (or packet delay variation, PDV), which is unpredictable,

what is called Network Jitter (not to be confused with Clock jitter). When

the network includes a DSL link, overhead and other issues are also to be

considered, detailed in [44]. Any filtering, coding or compression applied to the

digital audio adds extra latency. Only a very few audio compression algorithms

provide latency of a few milliseconds. This is why in many NMP projects it is

preferred to stream uncompressed audio.

3.2.3 Delay Jitter

The network delay is not constant, and can quickly vary from packet to packet.

Network delay is subject to jitter. Scheduling of the audio process at the two

ends is also subject to a small delay random delay (interrupts of higher priority

may postpone execution of audio processes or delay in the processing of packets

queued at the network drivers level of a kernel, which, to optimize throughput,

are not sent at once).

A brief formalism for network delay jitter is provided. Abstracting from

the communication medium and network topology, a certain delay will occur

between the transmission of a packet and its reception by the recipient. This

delay is subject to jitter, i.e.

n(i) = n̄+ ν(i), (3.4)

where the time-varying delay n(i) depends on a constant component n̄ (prop-

agation speed, switching, etc.) and a stochastic process ν(i). The stochastic

component cannot be predicted, thus a buffering mechanism must be employed.

Choice of the buffer size depends on the shape of the probability density func-

tion (PDF) estimated for ν(t). If the PDF ν(τ) reaches zero at ∞, a probabil-

ity - however small - of dropout must be tolerated. A probability of tolerated

dropouts pt in the form of Eq. 3.1 must be chosen. In the case, e.g. of one
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dropout tolerated over a 1 hour performance

pt = 1
Fs

P · 3600
(3.5)

with Fs being the sampling frequency, P the fixed packet payload size in terms

of audio samples. Once the PDF is known, the maximum delay DM is the

delay value for which the residual area (the tail of the PDF) is A(DM ) ≤ pt, as

clarified by Figure 3.4. The buffer size should be ≥ DM to accommodate for

late packet arrivals up to the maximum delay. For each specific application, the

PDF should be characterized. This, however, is often difficult, and the PDF

may be highly time-varying. It also does not take into account other impacting

factors such as momentary link failure due to accidents, network failure, power

shortages and such. Thus, more pragmatic strategies for buffer size choice may

well be employed.

ν(τ)

τ=DM
A(DM)

τ
Figure 3.4: An example Probability Distribution Function of the jitter and

choice of the buffer size accounting for the maximum tolerated delay
DM .

Jitter cannot be avoided, but mitigated or compensated for, by estimating

a worst case and allocating sufficient buffering to allow late packet arrival.

However the worst case condition may generate a buffering latency too high to

sustain NMP, therefore a trade-off must be done. In that case a late packet

may generate a dropout, i.e. arriving too late for the software to send the data

to the audio hardware.

To summarize, a few graphical representation of the concept described above

are proposed. Figure 3.5 reports the delays to take into account for an audio

link:
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• the period time, i.e. the time for a period to be recorded (orange),

• the delay involved with calling an interrupt service routine, waiting for

the audio thread to be scheduled by the operating system the timestamp

for this period to be calculated and the packet to be put into a queue for

transmission,

• the delay to cross the network and reach the receiver,

• the receiver queues the period into a buffer, according to its own audio

card period rate when an interrupt occurs the period is copied into the

hardware buffer for later playback.

It must be noted that the network jitter effect is partially removed by the

buffering mechanism. In Figure 3.6, e.g., a packet affected by a random delay

and arriving in the range ti < t < tIRQ2 − ε (with ε very small) is played back

in the same audio card time slot. Provided that the receiver incorporates a

packet reordering mechanism and the packets are provided with a counter by

the transmitter, a packet arriving between Ti and TIRQ2 can be played back

properly. Furthermore, latency is insensitive of the exact arrival time, due to

quantization of time in periods.

In Figure 3.7 an example transmission where the latency is initially set by

the transmission delay imposed by packet 1, incur into dropout of packet 4

when the network delay for that packet exceeds the buffering capacity of the

receiver. A larger buffer would take into account for additional jitter in the

network delay and, accordingly, allow packet 4 to be scheduled for playback

notwithstanding its large delay.

3.2.4 A/D and D/A Clock Synchronization

Even on an ideal network, there is another issue that is worth addressing which

is audio card clock skew, i.e. a slight difference between the nominal clock and

the actual value. This may be due to errors in components rating as well as a

change in environment conditions such as temperature. Even a small difference

between the two remote ends clocks can lead to dropouts in a relatively short
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initiatorHW

receiverHW

initiatorSW

receiverSW

interrupt servicing delay

network delay

record

playback
hardware buffer delay

latency

ti

Figure 3.5: Delays related to an audio link. Interrupt servicing delay, network
delay and queuing delay. All these are subject to latency.

time frame. For instance, a 20-60 ppm skew (e.g. 1-3 Hz at 48 kHz) with short

buffers can lead to dropout at the receiving end in a few minutes. Assuming a

buffering mechanism at the receiving end compensating for network jitter, of

N slots of B samples each, and assuming (for simplicity) that at both ends the

machines process audio buffers of B samples with the same nominal samplerate

but different actual clock frequencies F1 and F2, a dropout will occur every

∆ = N ·B
|F1 − F2|

. (3.6)

For a skew of 1 Hz at 48 kHz nominal samplerate with buffers of 128 samples

and a circular buffer of 4 slots this yields to 8.5 minutes, i.e. 7 dropouts in

1 hour, which is not acceptable for a regular performance. Depending on the

buffering mechanism the ∆ may be even lower. Let us consider a circular

implementation of the buffer, i.e. a ring buffer. Without prior knolwedge

regarding the two clocks frequency the safest way to initialize the read and
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initiatorHW

receiverHW

initiatorSW

receiverSW

interrupt servicing delay

record

playback
hardware buffer delay

latency

ti

tIRQ2

ti+1

tIRQ1

Figure 3.6: A packet arriving slightly after IRQ1 or right before IRQ2 due to
different network delay has the same effect on latency due to quanti-
zation of time in periods. The larger the period (and the buffering)
the more tolerant the system to network jitter.

initiatorHW

receiverHW

initiatorSW

receiverSW

1 2 3 4 5

1 2 3 5

1 2 3 [ ] 5
too late!

Figure 3.7: An example of packet dropout due to network delay jitter. The
larger delay imposed by network to packet 4 forbids it to be played
back as it arrives too late. The average latency is imposed by the
first packet.
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write pointers is at the two furthest position, i.e. one at the slot i = 1 and

the other at slot j = N/2 + 1 (assuming an even N). The under-run condition

occurs when the read pointer proceeds faster than the write pointer (i.e. the

remote end has a slower clock) and reaches the write pointer slot. The over-run

condition occurs when the write pointer proceeds faster than the read pointer

and finally has no empty slots to write to. With the aforementioned initial

conditions i, j, the time between two consecutive overruns ∆o or underruns

∆u is ∆o = ∆u = 1
2 ∆.

To recover from underrun state, the read pointer is spun back m slots, thus

it reads again part of the previous audio (or simply null data if these were

erased after reading). To recover from overrun, recovery is done by advancing

the write pointer as it is supposed to do and place the read pointer m slots

ahead. With such a ring buffer implementation, if

• F1 > F2: ∆o = m
N∆,

• F1 < F2: ∆u = m
N∆,

Clearly, m can be at best m < N − 1. The closer to 1 the ratio m/N is, the

closer to the ideal case.

To express the problem in more rigorous terms the following formalism is

introduced. Any hardware clock source is employed to obtain a system time

that is used in software for many purposes. A clock can be seen as an oscillator

generating periodical events and a (software) accumulator that increases its

count at each event. An accumulator function, or time function T (t) [45],

is a mapping between the real time t and the clock events, i.e. a piecewise

continuous function that is twice differentiable

T : < −→ <. (3.7)

Let T1(t) and T2(t) be two independent clock generators, and T ′1(t), T2(t)′

their time derivative, then the:

• offset: is defined as the difference ρ21 = T2(t)− T1(t);
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• frequency: is the rate at which a clock progresses. The instantaneous

frequency of the first clock at time t is F1(t) = T ′1(t);

• absolute skew: is the difference between a clock frequency and the real

time, e.g. for the first clock β1 = T ′1(t)− t′;

• relative skew: is the difference between two clock frequencies, e.g. σ21 =

T ′2(t)− T ′1(t);

• clock ratio: the ratio between two clock instantaneous frequencies, e.g.

α21 = T ′2(t)/T ′1(t).

When a sentence clearly refers to the frequency difference between two clocks,

the relative skew is simply called skew.

The general model for a clock time function is

T (t) = β(t) · t+ ξ(t) + T (0), (3.8)

where β is the absolute skew, which determines the slope of the function, ξ(t)

is a power-law random process modelling jitter of the clock events and T (0)

is the initial value of the function. with c onstant F1.F2, the relation between

clock ratio and skew is

σ21 = F2(t)− F1(t) = αF2 − F1 = (α− 1)F1 (3.9)

In non-ideal oscillators, unfortunately, the frequency F (t) is slowly time vary-

ing and departs from the nominal value F0, i.e.

F (t) = F0 + Fe + ν(t), (3.10)

where F0 is the nominal frequency, Fe is a frequency offset, i.e. a constant

departure from the nominal value and ν(t) is a slowly time-varying stochastic

process.

Instantaneous synchrony takes place when T1(t) = T2(t), meaning that times-

tamps generated by two different machines at a specific time t are the same. Of
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greater interest for a long run synchronization of two remote ends is the case

when T ′1(t) = T ′2(t), i.e. two clocks have same pace, and β1 − β2 = 0. Other-

wise the offset between the two time functions diverges T2(t)− T1(t)→∞ for

t→∞. Clock frequency synchronization is also called along the essay relative

time approach, while perfect or absolute synchronization is the case when both

T1(t) = T2(t) and T ′1(t) = T ′2(t).

Several synchronization mechanisms are proposed for wireless networks. In

[46], e.g., a mutual synchronization mechanism between two or more ends is

proposed employing a control loop that minimizes the error between two time

functions. This mechanism called CS-MNS, is an absolute synchronization

mechanism. In the audio case, however, the time function generally starts

when the audio process is started. Relative time synchronization is already

sufficient since two time functions may have different offset if two audio pro-

cesses are started independently. A last approach worth to mention here was

proposed by Carôt [47] that employs an external frequency generator driven

by software. The frequency generator replaces the sound card clock. Unfor-

tunately the approach requires a frequency generator and a sound card that

is capable of receiving a so-called word-clock, i.e. an external clock reference.

Two approaches for synchronization through resampling are provided in the

next chapter.

It must be noted that professional equipment is prone to clock skew as well

as inexpensive OEM hardware.

3.3 Communication Technologies for Networked

Music Performance

Communication technologies are leveraged daily in the music broadcasting and

distribution fields [48]: Audio-over-Ethernet technologies are widely used for

the local area [49, 50] (broadcasting studios, large rehearsal studios and so on),

and Audio-over-Internet is widely adopted for broadcasting contents to the

end-users [51, 52, 53]. The Internet and 4G radio communication deliver music
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contents to hundreds of millions of users daily. These technologies, however

have no connection with music interaction and performance, since they are

designed for one-way multimedia streaming. As a general purpose network,

however, the Internet has been explored for compositional purposes and NMP

[54]. One of the most notable technical results is the use of research fiber

network links for audio and video transmission in the context of real-time music

performance, first explored in the late 1990s [55] and nowadays exploited for a

number of performances [26, 56]. Wired Local Area Networks are well known to

sustain audio communication, and even distributed computing [57]. Wireless

technologies are, however, relegated at the moment as an auxiliary feature

for remote control of digital devices such as mixers and such, neglecting the

potential that wireless networking can have even in the mission critical field of

music performance.

3.3.1 Suitable Wireless Communication Technologies

So far a general introduction to NMP has been provided, with many example

related to Internet NMP or wired LAN NMP. Wireless communication tech-

nology are ready to deliver robust audio transmission for NMP? At the time

of writing, the use of wireless communication is limited to:

• analog or digital point-to-point unidirectional links transmitting micro-

phone or guitar signals to custom receiving stations, to allow speakers or

musicians for a higher freedom of movement,

• unidirectional A2DP (Advanced Audio Distribution Profile) Buetooth

links from a smartphone or music player to a public address speaker

system or loudspeaker system.

Either options feature a point-to-point unidirectional signal transmission. No

networking can be performed and different devices communicate on different

channels. Bluetooth links are designed only for playback of compressed audio,

and do not provide low latency.

Another interesting field is that of home cinema loudspeaker, where wire-

less networks are used for unidirectional transmission of audio packets to the
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loudspeakers. One interesting development [58], shows that 802.11n networks

can provide a high-bandwidth streaming of audio with a very low latency (in

[58] a unidirectional stream of 8 audio channels at 192kHz 32-bit with audio

packets as small as around 50 samples is reported). Commercial applications

are available since years and most of them rely on WiFi links, with a few excep-

tions7 8, motivated by the need to differentiate from other products in terms

of reliability, bandwidth and features.

These wireless technologies alternative to 802.11 may be appealing in terms

of throughput, robustness to interferences, latency and bandwidth. Skaa7, for

instance, is based on a proprietary protocol and System On a Chip from Eleven

Engineering Inc., which implements an adaptive frequency hopping algorithm

(called Walking Frequency Diversity, patented), to dodge potential interferers

in the 2.4GHz ISM band, and a set of constant latency values, down to a

minimum of 10 ms, with a maximum latency offset between two receivers of

40µs. The protocol allows only for unidirectional signal transmission, although

communication is bidirectional to collect RF link statistics and ask for packet

retransmission.

Two silicon manufacturers that provide a wireless audio solutions are Texas

Instruments and Microchip, among others. TI provides the CC85x family of

ICs, that operates at maximum 5 Mbps in the 2.4 GHz ISM band, avoid-

ing interferers by adaptive frequency hopping and listen-before-talk, and pro-

viding forward error correction, buffering, retransmission to minimize errors.

The audio links are CD quality, maximum 4 channels unidirectional and the

minimum latency 10.6 ms. These characteristics make it unfeasible for NMP.

Microchip branded the KleerNet technology that is targeted at unidirectional

audio streaming to loudspeakers and wireless microphones. It operates in the

2.4, 5.2 and 5.8GHz bands and guarantees an indoor range of up to 60m.

The marketed ICs host a large set of features, including audio processing and

user input. The latency is declared to be under 20 ms and clock sync may

be achieved by means of digital interpolation. Again, this technology is not

7http://www.sonos.com/
8http://www.skaa.com/
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feasible for quick exploitation in wireless NMP.

A last interesting opportunity to mention is the use of sub-1GHz ISM bands

for increased range. Analog wireless audio transmitter for stage use are tradi-

tionally in the VHF band. Analog or digital UHF equipment also exists and

is widely used. No networking protocol is associated, however, to any sub-

1GHz technology that has sufficient bandwidth for high quality audio, as these

protocols are meant for wireless sensor networks and similar uses.

Once all the aforementioned wireless solutions were discarded, the only good

candidate remaining for a viable implementation of a wireless NMP system

was the widespread IEEE 802.11 family of protocols. At the physical level, the

802.11a, b, g, n and ac protocols rely on the 2.4GHz and 5GHz ISM bands.

By employing different modulations, channels and antenna diversity techniques

they obtain very different bandwidths and coverage ranges.

The 802.11a and 802.11g are very mature and are of interest for their wide

acceptance. They reach a maximum raw data rate of 54Mbps, in the 5GHz

and 2.4GHz bands respectively. The 802.11b first extended the 802.11a to the

2.4GHz band and achieved a maximum raw data rate of 11Mbps. Considering

that the raw data rate only applies in the best case of transmission conditions

and that error correction and overhead must be taken into account, the effec-

tive throughput is significantly lower. IEEE 802.11 is half-duplex, hence, for

bidirectional audio transmission the required bandwidth must be correctly esti-

mated to fit the effective available throughput. In the case of multiple stations

the available bandwidth must be divided by the number of stations and extra

overhead due to collisions and coordination must be considered.

The 802.11n amendment improves on the previous ones by achieving a data

rate of maximum 600Mbps by introducing MIMO (Multiple Input Multiple

Output) antenna diversity over both 2.4GHz and 5GHz bands. A last amend-

ment recently implemented in devices and access points is 802.11ac, which

further increases the data rate by increasing MIMO number, channels width

and modulation order. Typical maximum raw data rates obtained with this

protocols are in the order 1300Mbps.

Critical factors in using 802.11 protocols for NMP follow:
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• the 2.4 and 5 GHz ISM bands are crowded by several communication

technologies and electric appliances

• medium access may sensibly delay audio transmission, especially with

increasing size of the network

• the hidden station problem may arise

Regarding access to the medium, the DCF (Distributed Coordination Func-

tion) is a medium access protocol meant to be fair with respect to all stations,

it does not cope with time-bounded traffic. For this reason the PCF (Point

Coordination Function) is also present which allows a coordinator to sched-

ule transmission during a contention-free period. The DCF and PCF are not

mutually exclusive and can coexist in a superframe. A superframe includes a

contention period and a contention-free period.

In [58], 8-channel unidirectional audio transmission is reported with 802.11n

in the 5GHz frequency band, at 108Mb/s data rate, employing antenna di-

versity. Each channel carries 32-bit audio at 192 kHz and is delivered using

multicast. Audio is transmitted in the contention-free period using PCF. A

contention period is available for additional data transmission. The contention

free period lasts 2.7 ms and is employed to transmit 12 audio blocks of approx.

50 samples each (approx 3 ms of audio). UDP multicast packets are sent and

not require an ACK. Forward Error Correction is employed to recover from bit

errors. In the prototype implementation two access points (built on desktop

Linux machines) have been used to handle the high traffic. This work proves

that IEEE 802.11 is worth considering for wireless audio streaming. It also

shows that much low-level development must be done to make such a system

work properly.
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Chapter 4

WeMUST: the Wireless Music

Studio project

Some of the technical challenges in the choice and design of platforms for music

signal processing and NMP have been reported in the previous chapters. This

overview make it easier to discuss the development of the Wireless Music Stu-

dio, in short WeMUST, a project conceived to explore the possibilities offered

by wireless networking in the music performance and studio context with a spe-

cial focus on technical challenges and their possible solution with widespread

hardware and protocols.

The key concept underneath the investigations within the WeMUST project

is the use of wireless transmission and IP networking to enable audio and

control signal transmission in music recording and performance. Neither of

the concepts is a novelty in itself: point-to-point radio technologies have been

available commercially since a few decades for large stage usage and networking

is currently employed with wired studio networks based on several Audio-over-

Ethernet standards. However the adoption of general purpose communication

technologies (in this case IEEE 802.11 and IP networking) in challenging sce-

narios such as those under investigation within the project have been scarcely

addressed by academic research, and is still to be considered by the indus-

try. The reason for the latter may partly be due to a negative bias among

musicians and technicians towards digital wireless technologies reliability, re-
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Chapter 4 WeMUST: the Wireless Music Studio project

Figure 4.1: A schematic view of possible scenarios enabled by the WeMUST
architecture.

ducing the commercial potential of new products featuring such technologies.

A common-ground experience regarding wireless networking is most proba-

bly that of personal computer and mobile devices relying on 802.11 protocols.

While this set of protocols is mature and globally adopted, users may still ex-

perience troubles due to its complex software architecture, to signal coverage,

interference and channel crowding, etc.

4.1 Application Scenarios

By taking advantage of wireless communication, a portable platform and, where

possible, battery energy storage, several application scenarios are possible. Fig-

ure 4.1 depicts some of them.

Home or small studio music production systems can be envisioned. In such

a scenario musicians can setup their instruments in the live room, turn their

transceivers on and quickly connect to WeMUST studio-provided amplifiers

and loudspeakers. The signal can be routed at the same time to a digital mixer

for recording in the monitoring room. In a home studio all the instruments

including MIDI controllers can be routed to a PC acting as DAW (Digital Audio

Workstation). The computational workload can be distributed among several

devices in a network, relieving the DAW running on a PC from part of the

processing, following recent experiments with LAN [57, 59]. For instruments

such as guitars which require effects to be applied, either the clean signal from

the instrument either the output from the amplifier can be streamed to the
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recording mixer. In the former case applying more specific effects is left to post-

production while the musician can perform with a sound he feels comfortable

playing with. If a technician is not required the musicians can control the

digital mixer in the monitoring room together with the multi-track recording

gear with a tablet device directly from the live room.

Furthermore the time consuming task of deploying cables from the front

and stage mixers to the stage, installing microphones and sound checking can

be avoided and made more reliable with the use of a wireless technology that

allows to quickly and flexibly connect the sound sources to the mixers. No check

need to be performed after the devices are connected and each instrument can

diagnose the network reliability and bandwidth with ease by automatic software

checks.

Common USB musical keyboards and controllers can thus convey the MIDI

or OSC data to the PC wirelessly. Regular expander racks and keyboards can

also be fitted with a WeMUST transceiver to send audio data directly to the

PC. If they are fitted with hardware controls or a touch surface they can control

the mixing parameters. The same wireless architecture can be also employed

for control of live lighting, smoke and fog.

Devices that transmit and receive audio can also manipulate audio. The

envisioned hardware platform must be, thus, also capable of performing DSP.

Avoiding cables may also reduce the risk of ground loops that introduce hiss

and hum into the audio equipment and avoid risk of accidental tripping over

cables.

Drawbacks must be highlighted as well. In that regard, the linux-audio com-

munity mailing list provided several critiques in the last two years, including

latency, cost and reliability of the solution in terms of dropouts. Reliability as

with any kind of wireless communications is related to time-varying fading and

multi-path which decrease the signal quality, especially with moving people or

objects. Furthermore wireless technologies are nowadays of public concern for

health related issues, hence attention must be paid to reduce as much as pos-

sible the amount of radiated energy from devices in a given space. Directional

antennas may help in reducing the radiated energy.
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Chapter 4 WeMUST: the Wireless Music Studio project

4.2 WeMUST: System and Topology

As a whole, WeMUST is currently a set of open hardware and software (from

now on HW and SW) tools designed to fulfill the requirements specified in

the introduction of this Chapter. The supported HW is the Beagleboard xM

(BBxM), based on an ARM Cortex-A8 core, and any x86-powered personal

computer running Debian or similar Linux distributions. Additional HW that

may be required for specific purposes is detailed in Sections 4.7, 4.8.1. Other

audio equipment such as high quality sound cards can possibly be employed

but will not be discussed here. A WeMUST system can be, thus, built with

rather inexpensive hardware.

At the audio level, the networking paradigm is that of a peer-to-peer network,

where every node can act as a transmitter and receiver, with no hierarchical

pattern. This is required to allow for the maximum flexibility of the network

topology that only requires two nodes of any kind to be active in the network.

For this reason, any master-slave scheme, as this enforced with other software

tools 1 is disregarded. Nodes of this network can independently enact any of the

following: acquire and/or emit acoustic signals, transmit and/or receive digital

audio or control signals, record and store signals. Nodes receiving signals from

multiple nodes and/or recording them are called mixing nodes (in short MPCs

in the case of personal computers). Nodes can also monitor the network for

debug purposes and issue commands to other nodes for connection, shutdown,

activation, etc. These nodes are called supervisors and are not necessary if

the other nodes are programmed to act independently or are controlled by

the user from a user interface (e.g. buttons). A simple diagram exemplifying

a WeMUST network with three nodes, one mixing node and a supervisor is

depicted in Figure 4.2.

An example setup is shown in Figure 4.3, where an MPC can transmit control

data (e.g. coming from a DAW or an algorithm), a click track for musicians

synchronization, and receives audio data for recording. The nodes can capture

or synthesize audio, or only be employed for remote MIDI control.

1such as netjack, the network driver built in JACK
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4.2 WeMUST: System and Topology

Figure 4.2: Schematic view of a WeMUST network comprising three nodes and
a mixing node mesh-connected. The number of nodes and their
connection can be arbitrary. A supervisor can scan the network for
devices, control the devices and their connections, receive debug
messages.
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Audio in

Audio out

WLAN

WeMUST node

MIDI/OSC

CLICK

CLICK

CLICK

synthesis Engine

Mixer PC

Public
Address

talkback
MIC

Figure 4.3: Example of a WeMUST setup, involving audio and control data
transmission between embedded devices and an MPC.

Each node must be connected to the network through a suitable wireless or

wired interface, currently a WiFi transceiver or an Ethernet controller. Com-

mercial wired routers and/or wireless Access Points are required. To establish

a connection with other nodes connection parameters must be configured by

the user. A script is provided to help the user configure the OS during in-

stallation. Implementing the SABy protocol [60], devised for use in WeMUST

similar contexts, facilitates connection. SABy is based on a simple multicast

and unicast messaging system (conceptually similar to UPnP) and DNS.

The nodes can run WeMUST OS, a specific Debian image customized for

the goal at hand. WeMUST OS already contains all the packages required for

the applications targeted by the WeMUST project. As such, all the software

is based on GNU/Linux and a collection of standard tools required for audio

and networking, supplied in the WeMUST OS image. Most of the software is

written in Bash and Python scripting languages for ease of use, distribution

and update. Jacktrip, an open source C++ application [61] is supplied for the

audio data transmission.
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4.3 Software

4.3.1 Operating System

The chosen Linux distribution is Debian, a popular distribution in both embed-

ded devices and personal computers, ported to a number of microarchitectures.

As one of the earliest distributions to date it is well established as a stable and

lightweight one, featuring three development stages, named unstable, testing

and stable. “Debian stable” (currently codenamedWheezy) comes from a freeze

of the testing codebase and undergoes several months of debug and fixes. It has

been chosen for its greater stability. In the Debian jargon, two ARM portings

exist, named armel and armhf. The former can run almost on any ARM, while

the second runs only on those featuring a floating point instruction set. Be-

ing the DM3730 floating-point-enabled, the armhf has been preferred to speed

up floating point calculations, useful for audio data conversion and processing.

The kernel chosen for the current version of WeMUST OS is 3.14.5-armv7-x8.

The current WeMUST OS image draws from a minimal Debian installation

image, devoid from almost any user application software. A set of useful tools

have been added from the official repositories, or after compilation from sources:

• development tools (compiler, automake, etc.),

• ALSA utilities and headers,

• JACK (Jack Audio Connection Kit) binaries and headers,

• Python 2.7 and libraries,

• Jacktrip (later detailed),

• networking tools (Avahi, etc.) and other utilities.

This allows the image and required disk space required to keep low, while

allowing for all the functions expected to be implemented in the WeMUST

framework.

One of the most relevant software stacks is that related to audio. In general,

the sound card A/D gathers samples at a certain rate imposed by the clock and
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generates an interrupt every time a period (power of 2-sized chunk of the audio

buffer) is ready to be passed to the software. The interrupt is not serviced

instantaneously by the operating system, but may be deferred depending on

its priority. Furthermore, the function calls triggered by the interrupt service

routing, through a number of software layers take some time to reach obtain a

timestamp from the system clock, to be used for audio management purposes.

This timestamp, linked to the first sample of the audio collected from the

hardware, is delayed with respect to the time the sample was obtained by the

A/D, and this delay suffers some jitter, imposed by the aforementioned factors.

For this reason, JACK implements a means to estimate the period time (from

which the actual sample rate can be calculated), the beginning of the current

period and the beginning of the next one. This is done in software by a digital

phase locked loop, i.e. a DLL, a control loop, described in [62]. Filtering the

system time by means of a DLL allows for a smooth and monotonous time

function T (t). From the DLL, an adaptive estimate of the clock frequency can

be obtained.

The WeMUST system is currently based on ALSA and JACK2. ALSA (Ad-

vanced Linux Sound Architecture) is the currently maintained audio driver

and API for low-level audio on Linux, replacing the legacy driver OSS. Jack is

an open-source sound server available for PCs and ARM devices and handles

low-latency audio and MIDI under many operating systems including UNIX

and Linux. It enables interconnecting different applications, sources and sinks.

JACK is a set of APIs and an audio server. It enables real-time processing

within its active clients, i.e. real-time threads from running applications. A

userspace application can register one its functions to be executed at each

JACK cycle (i.e. every period time) via the following callback.

int jack_set_process_callback ( jack_client_t *client ,

JackProcessCallback

process_callback ,

void *arg)

2jackaudio.org
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Figure 4.4: Internal and external clients in JACK.

Listing 4.1: JACK process callback method

When the audio engine starts, the process_callback function is executed

at each period time and the internal time function T (t) is started. All JACK

clients are executed in a serial fashion and their input and output ports can

be daisy-chained, thus they all must complete processing in the current time-

frame in order avoid audio dropouts. This is called synchronous mode in Jack.

Clients can be internal (those strictly related to JACK inherent functions, e.g.

audio capture and playback) or external, ase seen in Figure 4.4.

Audio samples are handled in arrays, called periods. Each period consists

of an interleaved sequence of left/right samples (in the case of stereo audio),

called frames. Period sizes can range from 32 to 1024 and above frames. Shorter

periods allow for reduced latency, but they increase the computational overhead

as the number of interrupts increase. The latency is also related to the buffer

size, i.e. the number of periods that are allocated for exchange of audio data

to and from the audio card. A minimum of two periods must be allocated in
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the buffer, in order to perform a ping-pong strategy, since to concurrent read or

write can be done: while the hardware writes a buffer, the other one is passed to

the software for reading, and viceversa. Figure 4.5 clarifies the concept related

to buffering. Note that two periods are always in use by the software or the

hardware for passing audio data. By allocating more periods in the buffer the

process of exchanging audio to and from the hardware is safer, however extra

latency is added. The input-output latency is

Di/o = 2 · (N)× P

Fs
, (4.1)

where N the number of buffers (min:2 for the ping-pong case), P the period

size - normally of 2i samples. To this, the delay introduced by any algorithms

(zero only if audio is sent back to the output or no components with memory

are employed in the processing) must be added. Interrupts from the audio

card signal the presence of a new period to read and require a new period to

play. For each period, JACK reads the input period and writes back an output

period with audio to play back. The reading, processing and writing back

must be done in the time between two audio card interrupts, i.e. a period time.

In order to make audio work properly, JACK is called whenever an interrupt

from the audio card is generated and allows its clients to be scheduled by the

operating system. JACK real-time thread is scheduled as a real-time process

by the SCHED_FIFO queue, to preempt other userspace processes that do not

have strict timing requirements. Jack clients run a real-time DSP thread under

SCHED_FIFO and other non real-time threads under SCHED_OTHER scheduler.

Every Jack client RT thread gets a priority lower than that of Jack but higher

than most userspace processes, thus, Jack can preempt clients that do not

release the CPU when the deadline is reached (new interrupt). Every time this

happens a dropout can be noticed, due to JACK giving back to the hardware

a period not containing new data. The scheduling mechanism is reported in

Figure 4.6.

The software stack dealing with audio is reported in Figure 4.7. Figure 4.8

reports all the components of ALSA and OSS (Open Sound Server), the legacy
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L R frame
period

buffer

(e.g. sampled every 1/44100 s)

(typ. 64-1024 frames)

(min.2 periods)
= simultaneously used by either the audio process or the hardwareNote:

Figure 4.5: Naming convention used in the Linux audio community.

R W
J c1 c2 c3

tothers
(IRQ) (IRQ)

Sp

1 JACK cycle = 1 period time = P/Fs
Figure 4.6: Audio processes with scheduling priority Sp scheduled on a single-

thread processor. The JACK audio routine (J) is executed first,
due its higher priority, at the interrupt of the audio card. Three
JACK clients (c1, c2, c3) follow. Their scheduling order is imposed
by JACK according the dependencies imposed by their routing. For
the sake of simplicity only the read from the audio card (R) and
the write (W) are shown.
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sound server on Linux systems.

Further details on the audio software stack are given. ALSA is a kernel

module that manages the hardware, and provides the buffering mechanism for

audio input and output. It only allows one client to take exclusive control of the

hardware. In this case JACK takes control of the hardware, allowing a number

of audio clients to exchange audio with the hardware and among themselves.

All the clients are synchronized to the audio codec interrupts. The interrupts

depend on the period size. As reported above, the shorter the period size, the

more frequent the interrupts, hence the more the overhead. In our case the

shortest period size is 64 4-channels frames. When JACK is started all the

audio parameters (bit-depth, sample rate, period size, etc.) must be specified.

These parameters cannot change dynamically, and all the audio clients must

work at the specified samplerate and period size (although internally they may

resample). No resampling is performed inside JACK itself, differently from

other audio servers, such as Pulseaudio. This ensures synchronization, high

quality and reduced overhead.

4.3.2 Networking and Debugging

The JACK audio server already supports remote audio streaming employing

one of the following modules: netjack1, netjack2. In alternative the jacktrip

[63] and zita-njbridge clients exist. Each one of these has its own pro and

cons, making it desirable for certain features but inadequate for some uses.

For instance, netjack1 supports uncompressed audio streams as well as CELT-

compressed3 ones. Typical CELT coding delay is very low, but stands between

5 to 22.5 ms making its use undesirable for the application at hand. Table 4.1

highlights the main features for each one.

Desired features for the WeMUST platform are the availability of a device

discovery mechanism, and multiple peer-2-peer links. The master-slave link,

employed by netjack1 and netjack2, is not as flexible as it would be desired

for the WeMUST platform. Synchrony between two devices in master-slave
3CELT stands for “Constrained Energy Lapped Transform” and is a low-delay audio
codec[41]. CELT is obsolete, replaced by Opus: www.opus-codec.org.
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Linux 
Kernel
Hardware

ALSA
library

jackd

ALSA kernel
driver

ALSA kernel API

hardware access

ALSA library API

ALSA backend & 
clock system

task
scheduler

jack client 1

All threads within 
jackd domain are 
synchronized and
daisy chained

GUI, 
non-RT threads

sys/
socket.h

RT audio thread

jack
client 2

jack
client i

networking
applications
(incl. jack
clients for

NMP)

Figure 4.7: Overview of the audio software stack with a generic Linux use case.
JACK is employed to run several audio threads.

compression link auto discovery synchrony
netjack1 CELT or no compress. master-slave none yes
netjack2 uncompressed master-slave yes yes
jacktrip uncompressed peer-2-peer none none

Table 4.1: Comparison of different audio networking applications in JACK.
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Figure 4.8: Overview of the different software components of ALSA in a Linux
system.
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mode is guaranteed by disconnecting the slave end from its audio card. This

allows for processing on the slave end but no local sound card playback nor

retransmission to another device. In order to do so, audio must be resampled

by an additional module called audioadapter. Setup of such a master-slave

link requires several minutes, a keyboard, a terminal window and an expert

computer user. The WeMUST platform points toward a connection system

based on automatic device discovery which automatically lists sources or sinks

compatible with the current device, allowing selection of connections from a

graphical display.

Jacktrip has been considered in this work. It is released as an open-source

software4 and has been improved during the development of WeMUST [64],

branching the original source code of the v1.1.0 release. Either the Debian

repository version (Jacktrip v1.0.5) and the modified one have been tested and

employed in the WeMUST project. The v1.1.0 is more CPU-intensive than

v1.0.5, mainly because of the v1.1.0 architecture reworking. When all the

devices in the network share the same audio parameters, v1.0.5 is viable, while

the modified code is needed for heterogeneous settings due to the addition of

resampling. Jacktrip is employed to acquire audio from the hardware and send

it to a remote client through the network. It also allows to receive audio from

the same client. This could be a processed version of the original signal, or a

monitor mix of several sources as in the Waterfront performance.

At the time of writing, a new open-source client has been released, called zita-

njbridge, which has been briefly tested and proved efficient. However it was not

available at the time the majority of the development was being conducted. In

Section 6.1 it is discussed for future addition to WeMUST.

A set of Python scripts have been developed to allow easy audio transmission,

debug and control. The scripts running on the BBxM are:

• jackaudio

• wemust-daemon

• read-usrbutton
4https://code.google.com/p/jacktrip/
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At boot time the latter two are started by an init script. This script is

started when networking services, the frequency scaling service and all the

other required functionalities have been started.

On a supervisor machine other Python tools are required: wemust-netdbg

and wemust-connect. Both the BBxM and the PC scripts are based on a

Python library of function, wemust.py.

Figure 4.9 reports a simplified diagram that clarifies interactions and func-

tionalities of these scripts. When all the required system services are loaded, an

init script is started that loads the wemust-daemon and the read-usrbutton

daemon. The latter controls the user button available on the BBxM, exposed

as a sysfs item. Two modes are available: the button can act as a reset button

(each time it is pressed jackaudio is stopped and restarted), or as a toggle to

start and stop jackaudio. Wemust-daemon takes care of two parallel threads

that will run until the system stops. The first, getTempThread periodically

reads the CPU core temperature and sends it to the supervisor PC. The sec-

ond, ctrlThread waits for commands from the supervisor PC, and executes

them, sending back to the supervisor any command output. This is used to con-

trol the BBxM remotely or request for status updates (e.g. running processes,

or kernel logs).

When either the user button is pressed, or the supervisor PC issues a “Start”

command, jackaudio is started, which will set the frequency scaling to the

maximum core frequency, start the JACK server, launch Jacktrip and connect it

to the input and output. All the options to JACK, Jacktrip and the connections

can be set by editing the fields at the top of the script or passing command

line options (as done by wemust-connect).

On the supervisor PC, the scripts present a functional GUI, as reported

in Figure 4.10. The problem of presenting the supervisor PC user with log

messages coming from multiple IPs and multiple applications requires a markup

strategy. Multiple consoles could be created, one for each peer. However, in this

case the higher the number of peers, the higher the number of consoles, with

the risk of crowding the PC screen. A functional distinction has been made

instead, allocating one console per function, i.e.: general logging information,
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Figure 4.9: A diagram showing functional sections of the scripts running on
WeMUST OS after boot.

messages from JACK and Jacktrip. Stacking these consoles horizontally allows

to follow easily the time flow from top to bottom. Different colors are assigned

to different peers, in order to increase readability.
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Figure 4.11: wemust-connect GUI.

The current GUI for wemust-connect, depicted in Figure 4.11, takes inspira-

tion from the connection utilities in QJackCtl5, a graphic frontend for JACK.

The graphic metaphores are the same, however, in this case, peers have ports

that are connected with other peers. The connection takes place by sending

appropriate commands to the peers.

The WeMUST-OS image for BBxM and all the software tools are available

at the A3LAB research group web page6.

4.4 Hardware

The BBxM is an open hardware platform, designed and promoted by the Bea-

gleboard.org Foundation. It features a 1GHz ARM Cortex-A8 core (Texas

Instruments DM 3730), 512MB RAM and many peripherals generally found

on personal computers or mini-PCs. One important aspect is the availability

of input and output line sockets, and a capable audio codec IC (Texas Instru-

ments TPS 95650). The input analog stage is lacking a preamplifier to adapt

5http://qjackctl.sourceforge.net/
6http://a3lab.dii.univpm.it/research/wemust
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to microphone signal levels.

More recent and widespread platforms, such as the Beagleboard Black by the

same team, or the Raspberry Pi, are similar in the core architecture, but are

targeted to different application, and either lack the onboard audio codec or

lack the audio input. For this reason, some works addressed this need by adding

an external audio codec or USB sound card[65, 66]. In WeMUST, portability

and ease of connection is a key goal, hence the BBxM, with its on-board audio

connections and codec has been preferred over other platforms.

Key components available on the platform are the Ethernet and USB con-

trollers, the audio codec, the RS232 serial interface for debugging and the

microSD slot which stores the bootloader and the operating system. The avail-

ability of the Ethernet controller is fundamental in prototyping stages, to ac-

cess the system reliably via a remote command console. The USB connection

is necessary to add WiFi capabilities or to attach commodity devices.

4.4.1 Power Management

Multimedia applications can often be power-constrained. Power management

is required for battery-powered applications, and there are use cases, such as

that described in Sec. 4.8 which require to run on battery. To avoid audio

glitches and achieve maximum performance the DM3730 core must not resort

to dynamic frequency scaling and for best performance it should be clocked at

the highest frequency, i.e. 1GHz during audio packets exchange or processing.

However, while waiting for a connection, the core can be clocked at a lower

frequency. This functionality, called frequency scaling, is implemented in the

cpufreq_governor Linux kernel module, generally referred to as scaling gov-

ernor, and is easily accessible from the sysfs virtual file system interface. The

scaling governor enables different operating modes, such as ondemand, perfor-

mance, powersave. While the former dynamically scales frequency according to

a load balancing algorithm, the latter two enable maximum and minimum core

frequency. By taking advantage of the sysfs interface WeMUST-tools scripts

enable to save power while not transmitting audio. As musical performances
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Figure 4.12: Diagram of the McBSP2 audio data path.

need to be set up some time prior to the due time (even hours before), saving

power while waiting for the performance to start enables to increase battery

life.

4.4.2 On-board Audio

While other embedded audio projects employ external USB audio interfaces [67]

or custom tailored I2S (Inter-IC Sound) audio codecs [66], the authors purport-

edly decided to take advantage of the on-board audio codec, pushing the system

to its full potential. As reported in previous works [64], the TPS95650 is a com-

panion chip supporting operation of OMAP3 and other OMAP3-compatible ICs

(such as the DM3730). It provides an audio codec (for high-quality multimedia

streams) and a voice codec (for lower quality, low latency voice communica-

tion). The audio codec is connected to one of the DM3730 serial lines, McBSP2

(Multi-channel Buffered Serial Port). The McBSP2 (see Figure 4.12 has a large

buffer, to avoid glitches in multimedia applications. At the current state, the

ALSA7 audio driver driver for TPS95650 , needs to fill the entire McBSP2

output buffer and thus, allocate several buffers. On the contrary, the input

McBSP2 buffer can allocate as few as two buffers of the desired length. In [64]

a solution was found to decrease the input-output latency to 9.3 ms by halving

the hardware buffer queue by introducing dummy data without affecting op-

eration. As a remark, lower latencies could be obtained with a different audio

chipset allowing for shorter hardware buffering with the same period size.

The choice of the buffer size determines the computational resources devoted
7ALSA stands for Advanced Linux Sound Architecture. It is the Linux kernel module taking
care of low-level audio function and hardware interfaces.
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to buffer exchange, interrupts servicing, etc. The lower the period size, the

higher the overhead. With the ARM core running at maximum speed, and

the software stack later described in Sec. 4.3.1, the minimum buffer size that

do not incur into glitches is 64 frames. Lowering the period size to 32 incur

into audible glitches and platform instabilities even when there is no processing

going on.

One important lack of the TPS95650 is the absence of a microphone preamp,

forcing the user to use an external preamplifier. 9V battery-powered ones are

a available for smartphones and similar devices which provide +48 V phantom

power, accept XLR balanced inputs and adapt it to the 3.5 mm jack input of

the BBxM.

4.4.3 A/D and D/A Latency and CPU Overhead

As mentioned previously, the input-output latency of the BBxM can be as low

as 9.3 ms without affecting the audio quality with audible glitches. This is

given by the need for 2 64-frames audio input buffers and 5 64-frames audio

output buffers at 48kHz. However, when transmitting audio to other peers,

some ring buffering is implemented inside Jacktrip, to avoid network jitter and

allow packet reordering. This buffering is necessary to avoid glitches due to

network issues, but adds some latency. Ring buffer size can be decided by

the user. With good networking condition (wired, or a good wireless link),

four buffers can be allocated, with an average delay of two buffers (the buffer

pointer tries to keep in the middle of the ring buffer to avoid both overruns and

underruns). Tests with two BBxM acting as peers, with the signal following

a round trip from one to the other and back via Jacktrip, the average input-

output latency is approximately 15.7 ms, with 6.4 ms given by the ring buffer

(two receive ring buffer, one for each trip) and the remainder 9.3 ms by the

BBxM hardware buffering. No resampling is performed and both BBxM are

set to work at 48kHz.

Another important aspect is the CPU load of such a configuration. The

shorter the period size, the shorter the time to perform all operations (inter-
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32kHz 44.1kHz 48kHz

128 jack 13% 19% 21%
jtrip 16% 21% 23%

64 jack 21% 30% 46%
jtrip 22% 33% 46%

32 jack 89% 78% 94%
jtrip - - -

Table 4.2: Average CPU load evaluated for different sample rates and period
sizes. Please note that with a period size of 32 frames, Jacktrip
has not been run since JACK already required most of the CPU for
synchronizing to the audio card interrupts.

rupts servicing, buffer handling, data encapsulation in 802.11 or 802.3 frames,

just to name a few). This results in a higher overhead and a higher average

CPU load. Table 4.2 reports some average CPU load data depending on the

audio parameters for a system running JACK, sending and receiving audio

packets through Jacktrip. These results have been measured in best-case con-

ditions and are subject to possible issues, such as CPU heating (depending

on the housing or the outside climate conditions), link reliability, and in rare

cases possible wear of the SD card hosting the whole operating system due

to the high load the system is subject to. For a more reliable performance,

more conservative options can be chosen. Please note that the upper bound for

glitch-less audio operation is well below the 100% CPU load threshold, due to

the non-optimal nature of the Linux scheduling algorithms (in terms of deadline

constraining) and the presence of kernel preemption and hardware interrupts.

Kernel network layer critical sections and network card interrupts servicing,

that are important for audio packet transmission can affect performance. In

the current case, for instance, the interrupt routine for the wireless or wired

LAN controller, may steal time to the audio process interrupt routine manag-

ing the TPS95650. Thriving more into these details is out of the scope of this

paper.
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4.4.4 Wireless Interface

As stated above, the goal of WeMUST is assess the feasibility of low-latency

audio transmission with commercial wireless technologies. Several sub-1GHz

ISM bands are available and inexpensive transceivers are marketed since years,

but can hardly provide enough bandwidth for high quality audio transmission.

On the other hand larger bandwidth channels are available for multimedia lo-

cal area networks, e.g. in the 60GHz band, but they are not yet widespread.

The 802.11 family is the communication technology adopted for the WeMUST

project, being the only widespread high-bandwidth wireless technology avail-

able at the time of writing. WiFi RF chips are nowadays embedded into almost

any computational device. For this reason the authors focused their effort on

the 802.11 family of protocols, however, at the time of writing, in the absence of

reliable 802.11ac device drivers available for the Linux kernel, tests have been

conducted only on 802.11a/b/g and 802.11n links. Regarding kernel driver

availability, WeMUST-OS is based on a recent kernel supporting several wire-

less chipsets8. Among these, the RT5370 (driver: rt2800usb) and RTL8191SU

(driver: rtl8712u) chipsets have been tested and work correctly on the BBxM.

In a previous work [68] it is shown that 802.11g networks are able to sustain

basic audio transfer: a bidirectional uncompressed 48kHz stereo couple does

not incur in sensible packet loss. The increased data rate available in a 802.11n

link reduces the loss probability to a very low value.

While driving a on-board or USB-connected wireless chipset is the most

straightforward solution to connectivity within WeMUST, wired Ethernet con-

nection facilitated the development and may be considered for alternative so-

lutions.

8http://wireless.kernel.org/
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4.5 Automating Connections: a Device Discovery

Protocol

In the path to a seamless audio connectivity framework some effort is required

in order to provide meta-data regarding the devices and the streams and allow

software to automatically connect or list available devices. The UPnP device

discovery protocol is taken as a reference for a protocol draft, implemented in

WeMUST.

4.5.1 UPnP Device Discovery

A number of device discovery protocols already exist in the literature and in

the market. One of the most used in multimedia wireless streaming is the Sim-

ple Service Discovery Protocol (SSDP), used by the UPnP Forum9, on which

DLNA-compliant products are based. The UPnP set of protocols is imple-

mented for many multimedia devices, such as smart TVs, smartphones, PCs,

NAS (Network Attached Storage) devices, etc 10. Both open and proprietary

implementations exist, ported to many platforms. The UPnP standard is very

complex and targeted to a large number of applications: from video streaming

to home audio distribution, from network printer access to multimedia con-

tent browsing. Audio streaming in UPnP is handled as a reliable compressed

stream, with large buffering and thus, high latency. As such, it is not tar-

geted to music production or performance use. The SSDP layer however is of

interest for several reasons: based on IP standards, it provides a server-less

discovery mechanism. SSDP is a HTTPU text-based protocol encapsulated in

UDP datagrams which are sent to a multicast address for discovery or to uni-

cast addresses for information exchange. The SSDP and upper UPnP layers

guarantee devices not only to discover other UPnP devices but also to describe

their set of features and resources and have access to them.

The SSDP device discovery mechanism includes three types of messages: ad-

9www.upnp.org
10UPnP Forum “UPnP Specifications v.1.1”, available online at:

http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf

73



i
i

“phd-thesis” — 2015/3/23 — 10:33 — page 74 — #100 i
i

i
i

i
i

Chapter 4 WeMUST: the Wireless Music Studio project

vertise (uses the NOTIFY * HTTP/1.1 header), search (uses the M-SEARCH *

HTTP/1.1 header) and search response (uses the HTTP/1.1 200 OK header).

The advertise message is issued by a root device for different purposes: an-

nounce a new root device connection or reaffirm its presence (Notification Sub

Type: ssdp:alive), several NOTIFY messages must be sent for each resource

or service), change or update information about the set of features and services

available (Notification Sub Type: ssdp:update), announce the removal of a

resource or service from the network (Notification Sub Type: ssdp:byebye).

The general connection scheme implies announces for a root device when it

first connects to the network, one for each of its embedded devices or services.

Control points can issue a search to the entire network or a unicast address in

order to receive further information on its capabilities. This sort of information

is described in XML format. The device description part of the UPnP is outside

the scope of the device discovery and will not described further.

4.5.2 Simple Autonomous Buddying Protocol Specifications

The SSDP is a server-less protocol that provides device discovery and search

preliminary to subsequent connection of devices. The protocol is quite flex-

ible and at the moment the authors considered it even too complex for the

application at hand. In alternative to SSDP the authors propose a simpler so-

lution, partly inspired by SSDP, called Simple Autonomous Buddying (SABy).

The current solution is implemented in the Python tools wemust-connect and

wemust-netdbg and as a Puredata C external, for compatibility with other plat-

forms. The Puredata external implementing SABy has been called [netfind]

and works together with two modified versions of [netsend~] and [netreceive~]

originally designed by Olaf Matthes11. The audio streaming is still handled by

the latter two externals, while the device discovery is handled by [netfind],

which configures the two streaming externals for proper connection to and from

a new peer, when found. In the Python implementation SABy-related classes

and functions are available in the wemust.py library. However, the Puredata

11http://www.nullmedium.de/dev/netsend~/
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implementation is less goal-specific and, thus, is taken here as example to detail

the SABy specifications.

SABy is similar to SSDP, but stripped down for the application at hand. A

multicast group (a multicast IPv4 address, i.e. 239.255.255.251:1991) is used,

similarly to SSDP for announcement of new devices. [netfind] can instantiate

four different child threads:

1. netfind_listen: listens to announces sent to the multicast group. When

a valid announce is received instantiates a new netfind_flowctrl thread.

2. netfind_announce: announces the existence of the device to the multi-

cast group at the instantiation of [netfind] and repeats the announce

at a certain interval ANNOUNCE_INTERVAL of several seconds.

3. netfind_flowctrl_listen: waits for incoming TCP connections at the

port FLOWCTRL_TCP_PORT. It can accept multiple connections. For each

connection negotiates the audio parameters, ports for audio streaming,

etc. If the peer netfind_flowctrl thread accepts the connection, they

keep the TCP connection alive and they check on each other’s state by

requiring a status message and reply with a ACK message.

4. netfind_flowctrl: is started when netfind_listen finds a suitable

peer to connect to. It tries to connect to that peer on its FLOWCTRL_TCP_PORT

port and initiates negotiation with it. The negotiation includes a check

for the match of the audio parameters (at the moment the sampling rate

only) and then tries to agree with the peer for port numbers for in-

coming and outgoing audio streaming. If successful, it sends connection

parameters to the [netsend~] and [netreceive~] externals connected

to [netfind] outlets.

In Figure 4.13 the interaction of two devices is illustrated, with L and F

being Peer1 netfind_listen and netfind_flowctrl child threads, while A

and FL are Peer2 netfind_announce and netfind_flowctrl_listen child

threads. Each peer have the identical set of threads, however for illustration

purpose only the ones involved in a handshake are shown. For instance, Peer1
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has its own netfind_announce and netfind_listen threads, but since the

two peers appear at different instants, the first one to spot the other’s pres-

ence is Peer1, which occurs to receive Peer2 multicast announce and starts

the negotiation between the F and FL threads. On the other hand the Peer2

netfind_listen thread will spot the presence of Peer1 only after their con-

nection, so that Peer2 netfind_listen will not start a new child thread for

connection with Peer1. The ANNOUNCE_INTERVAL time must be high enough to

statistically avoid two peers to simultaneously start a connection negotiation

but must be low enough for the user experience to be responsive enough. For

a simultaneous connection negotiation to happen from both sides the two de-

vices must send their announcement messages in a time interval shorter than

the connection negotiation duration (time from the creation of thread F1 to

success). This time interval generally takes from 5 to 6 ms. This condition thus

can only happen when two devices are both started in this short time interval.

The simultaneous connection negotiation can thus avoided by using on each

peer a register accessible from all its child threads to track peers with whom

connection is in negotiation. On the other hand, to improve the connection

responsiveness a search can be issued by [netfind] at start instead of waiting

for announcements.

The announce message is a text packet of the form shown in the following.

APP:< application name >

SR:< samplerate | period size >

NID:<ID >

TAG:<optional >

Listing 4.2: Announce message format

The first three fields are mandatory. The APP: field stores the application

(e.g. puredata) that implements the protocol. The NID field can be a user-

provided name or a unique 10-characters alphanumeric ID assigned by the

system at the instantiation of [netfind]. The SR: field stores audio para-

menters, while the TAG: field is optional and can store keywords describing the

device, that can be searched for. Multiple connections can be handled and
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Figure 4.13: Flow chart of the simple device discovery protocol between Peer1
and Peer2 child threads. L stands for Peer1 netfind_listen
thread, A and FL stand for Peer2 netfind_announce
and netfind_flowctrl_listen threads, F stands for Peer1
netfind_flowctrl thread.
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initiated this way very easily. It is up to the user to prepare the Pure Data

patch in order to handle audio from the peer platforms. An example patch is

provided together with the externals source code12 that is able to control sev-

eral [netsend~] and [netreceive~] externals, by way of multiplexing netfind

messages. In Figure 4.14 a 2-way communication implementation based on

a single Pure Data patch running on two different machines is illustrated for

clarity.

Figure 4.14: A 2-way communication implemented in Pure Data using
[netfind].

Selection of peers to connect with can be also done based on a list of capa-

bilities. When a search <tag> message is issued to [netfind], it performs

a query to the multicast group for devices that are tagged accordingly. From

that moment on it will also discard announce messages that do not contain the

specified tag. Tags are added to a [netfind] external by issuing a addtags

<tag list> message. The tagging mechanism allows for quick selection and

connection of available devices. For instance, a guitar stompbox based on

Pure Data patches and [netfind] can be configured to only connect the in-

put [netreceive~] external to devices tagged as “guitar”, and the output

[netsend~] external to a device tagged as “mixer” without need of human

intervention.

4.5.3 Comparison with SSDP

The SABy mechanism described hereby inherits some concepts from SSDP. It

is however different in some respects. Two design principles have been taken
12http://a3lab.dii.univpm.it/research/wemust
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into account: flexibility mediated by small computational footprint. A com-

plete UPnP software stack could be employed and adapted to the application at

hand and development could be based on existing open C/C++ libraries. How-

ever this would create a high dependency on rather large libraries, decreasing

portability, which results unnecessary and would create large compiled binaries

for such a simple task. This lightweight protocol includes all primary infor-

mation in the announce message. Description of the devices is based on text

tags and a simple search/query mechanism, instead of the much more complex

UPnP Description layer, which in turn requires an additional XML parser li-

brary. Overall responsiveness is very high, as mentioned above and the source

code is quite compact and self-contained.

4.6 Adaptive Resampling for Clock Synchronization

In Section 3.2.4 the clock synchronization issue was introduced, together with

an adequate formalism. The communication technology literature provides

several solutions depending on the use case constraints. As an example, the

CS-MNS algorithm is provided in Section 3.2.4. A different approach has been

implemented in jacktrip as part of the WeMUST project. Differently from

CS-MNS, which aims at a perfect synchronization. In NMP only frequency or

relative synchronization is required. The time functions of two remote ends

may have a different offset (i.e. JACK started at different instants), but the

audio link between the two instances of the network audio software start when

the first packet is sent from one of the two instances. Referring to the formalism

of Section 3.2.4, let the transmitter and receiver skew be β1 and β2 respectively.

If the two devices run at exactly the same frequency then β1 = β2, thus the

offset is

ρ = ξ1(t)− ξ2(t) + T1(0)− T2(0). (4.2)

As far as the random processes ξ1(t) and ξ2(t) are bounded the offset is bounded

as well. As explained in Section 3.2.4, a bounded offset can be compensated

for by buffering at the receiving end.
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Figure 4.15: SFG of a DLL.

In general, unfortunately, the assumption β1 = β2 is not justified in reality.

As a result the offset diverges with time. To avoid this from happening the two

frequencies should be matched somehow. There is no access to the hardware

clock of the two remote devices, thus the adjustment is done at the software

level by means of resampling. Resampling has been introduced in jacktrip

in two steps: a uniform resampling algorithm, allowing devices with different

nominal sampling rates to exchange audio seamlessly, and adaptive resampling,

allowing devices with different actual sampling rate to communicate without

dropouts. By employing both, of course both advantages are achieved.

Adaptive resampling is performed by constantly adapting the resampling

ratio to keep the same pace as the receiver. The data it requires to work is

extracted from the JACK DLL, hereby introduced.

4.6.1 Delay-Locked Loop in JACK

The DLL in JACK is a digital implementation of a typical Phase-Locked Loop

in analog electronics, i.e. a control loop employed to filter digital signals jitter

and such. A PLL is composed of a phase detector, a loop filter and voltage

control oscillator (VCO), see Figure 4.15.

Let θi (t) be the input signal phase and θo (t) the VCO output signal phase.

The output of the phase detector is, thus,

vd = Kd · (θi − θo) (4.3)

where Kd is the phase detector gain. Filtering the voltage vd by the low-pass
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filter F (s) removes noise and high-frequency components. The VCO frequency

is determined by the filter output vc(t). The relation between the VCO input

and its output frequency deviation from a central value is

∆ω = Ko · vc (4.4)

where Ko is the VCO gain. Given the differential relation between phase

and frequency,

∂θo
∂t

= Ko · vc, (4.5)

stands true. Its Laplace transform is

L

[
∂θo (t)
∂t

]
= s · θo (s) = Ko · Vc (s) , (4.6)

i.e. the phase of the VCO output is proportional to
∫
vc(t)dt. By also

transforming in the Laplace domain the following

Vd (s) = Kd · [θi (s)− θo (s)] (4.7)

Vc (s) = F (s) · Vd (s) (4.8)

the filter output is

Vc (s) = s ·Kd · F (s) · θi (s)
s+Ko ·Kd · F (s) = s · θi (s)

Ko
·H (s) (4.9)

whereH (s) is the closed-loop transfer function. By substituting the low-pass

filter Laplace transfer function

F (s) = 1 + τ2 · s
1 + τ1 · s

(4.10)
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Figure 4.16: Delay introduced by buffering and tracks parasitic components in
a IC require reconstructing the clock signal.

Figure 4.17: A PLL can be introduced to remove clock signal delay or jitter.

in 4.9, the closed loop transfer function can be rewritten as

H (s) = Kd · F (s)
s
Ko

+Kd · F (s) =
Ko·Kd(τ2·s+1)

τ1

s2 + s ·
(
Ko·Kd·τ2

τ1

)
+ Ko·Kd

τ1

. (4.11)

The closed loop transfer function is thus a second order one, and can be

simply rewritten as

H (s) = 2 · ξ · ωn · s+ ω2
n

s2 + 2 · ξ · ωn · s+ ω2
n

. (4.12)

The design of PLLs for clock skew reduction is well documented [69]. Its use

is necessary to remove the delay introduced by different propagation path for

the clock signal through copper tracks in ICs. In Figure 4.16 the clock signal

CKB at the input of a gate is delayed with respect from the input data Din

and the original clock CKin. By introducing a PLL in the clock path the delay

or jitter between CKin and CKb is removed by the feedback control, as shown

in Figure 4.17.

Similarly, in the digital domain, a feedback filter can be employed to filter

out jitter in timestamps and estimate the periodicity between those. Since

the closed-loop transfer function of a PLL is a simple second-order recursive

system, it can be implemented as a IIR, shown in Figure 4.18. Such a filter

is employed in JACK [62] to estimate the current and next period timestamps
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Figure 4.18: SFG of a second-order DLL.

as well as the period time. The filter coefficients are computed following the

equations

ω = 2πB
Fs

(4.13)

a = 0 (4.14)

b =
√

2ω (4.15)

c = ω2 (4.16)

where Fs is the sampling frequency and B the desired bandwidth.

Although the acronym is spelled as Delay-Locked Loop [62], the literature

suggests that DLL are implemented based on delay lines (see, e.g. [70]), while

the DLL in JACK is more strictly related a PLL, employing a second order

filter and a means to obtain an error signal.

4.6.2 Resampling Algorithm

Let F̂1(t) and F̂2(t) be the DLL estimate of clock frequencies F1 and F2 at

instant t. If the relation F̂1(t) < F̂2(t) stands true for a sufficient amount of

time, the second device goes overrun after some time. To solve the problem,

the receiving end must resample according to a ratio, calculated between the

two estimated clock as

Rr = F̂1

F̂2
·
P2
F02
P1
F01
·Ru (4.17)

where P1, P2 are the period size at both ends, and F01, F02 are the nominal
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sampling rates at both ends, while

Ru = F02/F01 (4.18)

is the uniform resampling ratio, if the two nominal frequencies differ. Some of

these parameters (P2, F02) are obtained from the transmitter when negotiating

the communication, while the F̂2 is estimated and added by the transmitter

at each period that is sent with the packet header. The packet header, thus

increases from 12 bytes to 16. With typical periods of 128 frames of 16 bits

(i.e. 512 bytes), the overhead increase is negligible: from 2.3% to 3.1%. The

F̂1 is estimated at the receiving end at each cycle. Both frequency estimates

are calculated from JACK DLL period estimate.

Adding adaptive resampling required modifying the ringBuffer class in jack-

trip. Referring to the ring buffer formalism introduced in 3.2.4, recovery from

underruns is done in jacktrip by spinning back the read pointer of m = 1

slots, while with overruns the read pointer is moved forward by m = N/2 − 1

slots. Both solutions may not prove efficient, i.e. they depart from the ideal

case of Eq. 3.2.4, however, they require no assumptions on the skew. In other

words, by moving the read pointer backward or forward (depending on the case

to recover from) by m = N/2 − 1 slots, an assumption is made, i.e. that the

over-/under-run condition occurred due to clock skew. If, on the other hand, an

underrun occurred because of delayed or lost packets, but the clocks are skewed

so that F1 > F2, without further occurrence of packet loss or delay, placing

the read pointer close to the write pointer will reduce the time to the next

overrun. The approach of the original jacktrip implementation was to make no

assumptions regarding clock skew, and the behavior has been retained for the

modified version as well.

The adaptive resampling mechanism requires to read an arbitrary number

of samples, that are fed to the resampler and then sent to JACK for play-

back. For this reason the original jacktrip RingBuffer class has been replaced

by the JACK API RingBuffer class. Resampling has been implemented by
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4.6 Adaptive Resampling for Clock Synchronization

making use of zita-resampler13, an open-source library by Fons Adriaensen

implementing polyphase filtering for audio resampling. This library provides

notable features compared to other open-source libraries such as libsamplerate.

Its computational cost, compared to libsamplerate is lower, even at the highest

quality setting.

Of specific interest is the VResampler class in Zita-resampler, that allows

arbitrary ratios 1/16 ≤ r ≤ 64 for the resampling factor. The algorithm that

is employed is a polyphase filter performing a constant bandwidth resampling

in the spectral domain. Let

• Fin, Fout be the input and output sample rates,

• Fmin the lower of the two,

• Flcm their lowest common multiple,

• b = Flcm/Fin,

• a = Flcm/Fout,

While an ideal resampler would perform interpolation and decimation of in-

teger factors, the resampler exploits b FIR filters in polyphase fashion. All these

filters have the same frequency response, but different delays that correspond

to the relative position in time of the input and output samples. The FIR

filters are approximation of ideal anti-aliasing and anti-imaging filters, thus

a trade-off between computational cost and aliasing is done by targeting the

resampler at between the common audio sample rates (44.1, 48, 88.2, 96, 192

kHz), and considering that consequently frequency response errors and aliasing

will occur only above the upper limit of the audible frequency range. Given

this assumption, a trade-off is made by dimensioning the polyphase filter to

reach an attenuation of 60dB at the Nyquist frequency. As a result, aliasing is

≤ −110dB for all the range 0− 20kHz at sample rates of 44100 or 48000 kHz.

13http://kokkinizita.linuxaudio.org/linuxaudio/zita-resampler/resampler.html
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Chapter 4 WeMUST: the Wireless Music Studio project

4.7 Wireless Transmission in Critical Contexts

In previous works by the authors [68, 60, 64], short-range indoor transmission is

taken in consideration as the target scenario. As a result, commercial USBWiFi

chipsets (as documented above) have been installed and tested on WeMUST

OS. These generally feature omnidirectional 2.4GHz/5GHz patch antennas or

larger dipole antennas.

In Sec. 4.8 a live performance will be reported which took place on boats over

the sea. The conditions imposed by this new scenario make a carefully designed

wireless transmission critical for the outcome of the performance. Specifically,

the longer distance to cover, the presence of water, moving obstacles and metal

objects (other boats, decks, etc.) require the RF link to be conceived differently.

The first option to consider is employing directional antennas to increase the

range and reduce scattering and reflections. The obvious shortcoming is to keep

the antennas in line-of-sight as much as possible. Additionally, to increase on

robustness, redundancy can be exploited, by creating a different RF link for

each BBxM, at a different frequency band. This, although increases the BOM

(Bill Of Materials) for a live performance, guarantees greater reliability. Finally,

it is generally suggested to use the 5 GHz ISM band instead of the 2.4 GHz one,

as it is less crowded and antenna patterns are narrower compared to a 2.4GHz

antenna of the same size. Obviously a field test to look for potential interferers

is mandatory, in order to avoid channels occupied by competing networks with

strong SNRs (Signal to Noise Ratio).

To facilitate the deployment and design of the performance, a set of wireless

devices from Mikrotik 14, the SXT 5HnD 15 have been employed. These devices

are configurable wireless stations/access points, comprising a 10/100 Ethernet

port, a directional antenna, driven by a high-power RF amplifier, and a micro-

processor. Their size is slightly bigger than that of the BBxM with the antenna

surface having a diameter of 140 mm. Configuration is done by software and

a large set of features are available, including routing, bridging and acting as

an access point. Wired and wireless interfaces are totally configurable and
14http://www.mikrotik.com/
15http://routerboard.com/RBSXT
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4.7 Wireless Transmission in Critical Contexts

the RF link can be set up using standard 802.11 modes or even proprietary

high-throughput protocols. The SXT can also scan an area for networks and

monitor SNR and link quality during transmission. As a result, each BBxM

drives an SXT by employing the Ethernet port, instead of using a local bus as

it would be done with USB adapters.

To assess the viability of the solution and SNR margin for live usage, pre-

liminary experiments have been conducted in an indoor space of 19x9 m. This

space, although not ideal, is free from neighboring wireless networks, obstacles

or reflective surfaces and stands as a good reference for best-case transmission,

with SNR values very close to the maximum ones achievable. Tests were per-

formed setting up three separate 802.11a links, on three adjacent frequency

bands, of 20 MHz width each inside the 5 GHz ISM band. The antennas and

BBxM were put on the side opposite to the mixing PC, i.e. at 19 m. The

SXT can automatically set for the best data rate, however in these favorable

conditions, the data rate always stays at the maximum 54Mbps and the SNR

is quite stable at an average 110 ±2dB with maximum Tx power. For what

concerns the used bandwidth, in these conditions, when sending stereo signals

in both directions with 32-bit samples at 48kHz, the SXT monitoring utility

measured Tx/Rx rates of 1.7Mbps/1.7Mbps including the overhead added by

Jacktrip and 802.11.

In a real-world communication scenario the SNR can drop dramatically from

the 110dB figure reported above, thus to properly design the RF link param-

eters it is necessary to collect statistics on link quality and find SNR margins

that guarantee a very low rate of audio glitches occurrence. In order to gain

insight on this, a set of tests has been performed reducing the SNR by decreas-

ing the transmission power. The interest in this context is on the rate of audio

periods lost, i.e. those that did not arrive in time or were not received at all.

The Period Loss Rate (PLR) index is, thus, introduced, which measures the

rate of lost periods over the total periods in the time unit. To evaluate the PLR

sine tones with offset were generated from the BBxM, sent to the mixing PC

and recorded there for later analysis by software. When the receiver is missing

a period it writes zeros to the output file, for easy detection of lost periods. The
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Figure 4.19: Period Loss Rate tests at different SNR. All tests have been con-
ducted at the same Data Rate (36Mbps) but decreasing Tx power,
thus decreasing the SNR.

test results are reported in Figure 4.19. As the Figure shows the salient aspect

is the sudden increase of lost packets when the link SNR falls below 38 dB.

Unexpectedly there is also a slight increase in the packet loss at very high SNR

values due to nonlinear effects at the RF frontend of the SXT (most promi-

nently intermodulation and input signal saturation). It is suggested, thus, that

a best-case scenario for evaluating transmission performance is not the first

one reported above, with a very high 110 ±2dB SNR, but a lower Tx power

configuration, which achieves an SNR between 90 and 40 dB.

In the attempt to reduce the SNR required to decrease the packet loss, several

strategies have been implemented, including:

• varying the number of transmission attempts on a missing ACK,

• introduce redundancy in Jacktrip, i.e. sending systematically a packet

more than once.

Unfortunately neither solution proves useful. A redundancy in Jacktrip even

increases the PLR, due to the doubled bandwidth. Sending data over UDP

devoids from the chance to ask for retransmission, but TCP is not a solution

due to the large increase in latency and its unpredictability.

When collecting signals from N remote ends into one mixing PC, for the sake

of reliability and robustness, it is suggested to create a link for each end. How-
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4.7 Wireless Transmission in Critical Contexts

ever, this N-by-N solution requires 2N SXT, plus one Ethernet network switch.

Another feasible setup needs N + 1 SXT only. In this case one of the SXT acts

as Access Point (AP) and the other as Stations, however all communication is

performed on one channel only, requiring enough bandwidth for transmission

of all the signals. Furthermore there is risk of collisions and increase of trans-

mission delays due to errors at one end. In other words, the isolation provided

by the more robust solution allows the performance not to be affected by a

broken link. PLR tests have been performed for a 3-to-1 case, analog to the

Waterfront case study described in Section 4.8, together with a multichannel

1-to-1 case involving the same amount of traffic. Figure 4.20 provides PLR re-

sults for two data rates and three different configurations. The baseline is the

first case where two bidirectional stereo channels are exchanged between two

nodes. The other two cases share the same overall bandwidth handled by the

node at the mixing PC end, i.e. 4.6Mbps and 9.2Mbps (excluding overhead).

In the 3-by-1 scenario, these cases are implemented:

• three nodes sending stereo signals to a mixing PC and the latter sending

a stereo mix back to them, for a total of six bidirectional streams (average

5.2Mbps uplink, 5.2Mbps downlink)

• three nodes sending 4-channels signals to a mixing PC and the latter

sending a 4-channel mix back to them, for a total of 12 bidirectional

streams (average 9.9Mbps uplink, 9.9Mbps downlink).

In the 1-to-1 scenario 6 or 12 audio channels are sent in both directions (with

total 5Mbps and 9.7Mbps uplink and downlink).

As the Figure shows the PLR increases with the number of channels for

both tests, however, as expected, the 1-to-1 case has a lower PLR due to the

decreased chance of collisions.

For the sake of comparison, it must be considered that with the N-by-N

solution the PLR stays equal to the baseline for all the connections. Reducing

the PLR for multichannel or N-by-1 requires further effort which is left to

future works, however viable alternatives may exploit the proprietary TDMA

protocols available with the SXT.

89



i
i

“phd-thesis” — 2015/3/23 — 10:33 — page 90 — #116 i
i

i
i

i
i

Chapter 4 WeMUST: the Wireless Music Studio project
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Figure 4.20: Period Loss Rate tests with different multi-channel configurations.
Please note, values of 0.74 · 10−6 (bottom values) mean that no
period loss was observed during an interval of 60 minutes.

All the results presented in this Section are for single-hop networks. Should

a longer signal chain be devised requiring multiple hops, further evaluation

should be done following the procedures in [71].

4.8 Waterfront: a Networked Music Performance

Experience

Once the viability of the approach has been assessed and the use of the SXT

as a transmitter has been validated a live performance has been envisioned

to showcase the framework and receive a feedback from trained musicians.

The performance was conceived for Acusmatiq, a live electronic music festival,

taking place in Ancona, Italy, in the magnificent frontage of the Mole Vanvitel-

liana, an 18th-century pentagonal building constructed on an artificial island

close to the port of Ancona and other historical buildings. Nowadays, the Mole

has decks for motor boats and sailboats, metal obstacles (such as metal lift

docks) and wireless networks for maritime purposes which can endanger crit-

ical wireless transmissions. The goal was to have acoustic musicians play on

separate boats at the frontage of the Mole, each with its own equipment to

stream their signal to the land, and receive back a mix of the ensemble play-
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4.8 Waterfront: a Networked Music Performance Experience

ing. The audience would stand on the land and be free to roam, exploring the

acoustic space and observe the musicians from different vantage points. The

performance has been called Waterfront.

Figure 4.21 reports the satellite view of the area. The maximum transmission

distance is that between the land antennas and the double-bass player (2 and

3 in Figure 4.21), i.e. 90m. The shortest is that between the land antennas

and the vocalist, (2 and 5), i.e. 30m. The pier (6), is 54 by 14 m wide. The

antennas are placed on top of the fortified wall, at 3 m height, to leave space

for the audience to rom along the pier.

After a careful selection of possible artistic proposals and performers, the

choice converged on a trio performance of Solo by Karlheinz Stockhausen. The

piece, dated 1966, explores on a solo performance (hence the name), augmented

by feedback tape delays which selectively loop some of the acoustic material

to enrich the scene and provide a seemingly ensemble experience. As opposed

to this, with Waterfront, the three musicians are granted a moment of solo

performance each, but join finally into an impromptu ensemble where each

instrument gains its space competitively, reinforced by the distorted recurrence

of the feedback delays. The whole performance lasts approximately 50 minutes.

The original piece required four technical assistants to manually drive the

delay taps, gains and filters according to six different variations suggested by

Stockhausen himself in form of notated scores. In this piece the signal process-

ing was conducted digitally with SOLO nr.19, an iPad application. Each of

the musicians had its own iOS device running the aforementioned application,

which captured the instrument signal and supplied the BBxM with the signal.

This also compensated for the lack of a microphone preamp on the BBxM, since

the iPad outputs a line signal, compatible with the BBxM line input. The iOS

devices add latency to the signal chain. This was discussed with the musicians

which could test with different setups and latency settings and finally decided

to have a slightly larger latency but perform with a less cumbersome equip-

ment. The processed version of the signal is insensitive of the low processing

delay added by the device, since the delays imposed by the Solo score can be up

to several seconds long. As a side note, considered the architecture of the We-
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Figure 4.21: Satellite view of the Mole Vanviteliana and the sorrounding area.
1) direction console with master PC, 2) land antennas standing on
the Mole fortified wall, 3) double bass, 4) saxophone, 5) vocalist,
6) audience
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4.8 Waterfront: a Networked Music Performance Experience

STATUS TX POWER SXT BBxM
[dBm] [mA] at 24 V [mA] at 5 V

Searching 17 115 465
Waiting 17 125

Transmitting 24Mbps
0 143

600

12 145
17 148

Transmitting 54Mbps
0 134
12 136
17 138

Table 4.3: Current consumption for the SXT and the BBxM under different
operating modes.

MUST framework, in order to reduce the use of hardware devices a countdown

and a click to synchronize musicians can be supplied from the MPC, together

with all the signal processing required by Stockhausen’s score (porting of the

signal processing in Solo exist for CSound and other languages). This would

also reduce the latency added by the iOS device. The musicians however felt

more comfortable in carrying their own iOS device which provides also visual

feedback.

A video of the performance is provided at the A3LAB research group We-

MUST page16.

4.8.1 Energy Supply

To evaluate the energy requirements of the system current consumptions have

been measured for both the BBxM and the SXT. Current probes have been

used to measure current consumption, while the voltage supplied by the reg-

ulated power supply is constant at 5 V for the BBxM and 12 V for the SXT

independent of the output current. Power requirements have been measured

during operation, and are reported at Table 4.3 as a function of the Data Rate

and the Tx Power.

The musicians have been supplied with a BBxM and an SXT each. To power
16http://a3lab.dii.univpm.it/research/wemust
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Figure 4.22: Schematic diagram of the battery supply circuit.

this equipment commercial-grade 12V 4.5Ah rechargeable Lead-Acid batteries

have been used, enabling sustained operation. The voltage must be regulated

to fit the requirements of the equipment. A switching voltage regulator, the

LM2596 (adjustable output version), has been employed. This allows up to

2A output current (without heat sink) and input voltage in the range 4.5V

to 40V. The efficiency depends on the output voltage. For the case at hand

(VIN = 12V, VOUT = 5V ) the efficiency is 80%. The typical quiescent current

is 5 mA at 25 C. To meet more stringent power constraints, the quiescent

current can be reduced to 80µA, by switching the component off (toggling pin

5, shown in Figure 4.22). The SXT have an internal regulator and can be

directly supplied with 12V.

During indoor transmission tests the battery life has been evaluated. As

expected the batteries performed slightly different from each other, however

the minimum battery life documented in the tests is of 3 hours of continuous

transmission plus 1 hour of waiting. Given the figures shown in Table 4.3, the

total power required by the system while transmitting is 6.3 W.

4.8.2 Audio Signal Routing and Monitoring

The signal routing is depicted in Figure 4.23. As mentioned beforehand, the

BBxM acquire the line signal from the iOS device, which is used to capture

the sound from the acoustic instrument, and output the original and processed
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4.8 Waterfront: a Networked Music Performance Experience

version. The BBxM acquires the signal and transmits it over to the SXT, which

acts as a transparent bridge to the mixing PC. As all the signals are acquired

at the master PC, they are mixed exploiting a software mixing console. The

direction could speak to the musicians with an open microphone connected to

the MPC sound card. By proper routing (which can be usually automated

by means of scripts and presets) the signals are mixed for the public address

system and are selectively sent to the musicians, to allow each one to have

its own earphone monitor mix, to ensure the best interaction experience. All

the musicians experience, thus, the same round-trip time, which, with the final

settings agreed for the premiere performance, was 27.4 ms, i.e. 15.7 ms (as

documented in Section 4.4.3) plus an iOS latency of 11.7 ms (128 samples

buffers, includes some proprietary microphone signal preprocessing). As stated

above, the latency added by the iOS devices can be reduced by moving all the

signal processing inside a JACK client in the MPC.

During the performance audio glitches have been partly masked by employing

a rudimentary error concealment mechanism available in Jacktrip, i.e. buffer

repeating. By offline analysis on the performance recording, three glitches were

spotted in approximately 50 minutes, up to the expectations from previous

transmission tests.

During the Waterfront premiere, a MacBook Pro was used as the MPC,

running JackOSX, Jacktrip, qjackctl and AULab. Equivalently, on a Linux

machine, JACK, Jacktrip, qjackctl and jack-mixer can be employed to obtain

similar features. For the sake of a stable performence, a Linux machine was

employed, running wemust-netdbg to monitor the state of the connections. This

configuration requires one technician managing audio, levels and musicians’

requests and another one to control the state of the connections. With the

system getting more mature both audio and monitoring tools could run on the

same machine.
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Figure 4.23: Overview of the hardware and connections employed in Water-
front.

4.9 Future Perspectives

The description of WeMUST has been targeted along the paper to introduce

Waterfront and similar applications, where many endpoints acquire signals and

send it to one mixing PC. The framework, though, has further features and

potential.

As mentioned beforehand, the processing involved with Solo, could be moved

to the mixing PC, to free the musicians from the use of a tablet device, or to

sustain computation of algorithms of higher complexity that require increased

computational power to be computed in real-time. Another option for Wa-

terfront could have been to port signal processing to the BBxM, in form of

C/C++ or Supercollider17 code, Puredata18 sketches and the likes. As long as

the BBxM is the platform of reference for WeMUST, signal processing must

be rather optimized to fit the computational power of the single core Cortex-

A8 at low period size. One downside of employing a headless platform is the

lack of visual cue or screen to provide musicians with information, a visual

metronome, etc. On the other hand, modern tablets have good computational
17http://supercollider.sourceforge.net/
18http://puredata.info/

96



i
i

“phd-thesis” — 2015/3/23 — 10:33 — page 97 — #123 i
i

i
i

i
i

4.9 Future Perspectives

resources and large displays but lack openness of development platforms and

are weighted down with general purpose software of no use in this context.

In Waterfront no control data has been exchanged. However, MIDI or OSC

data could be exchanged along the network, e.g. to remotely trigger events or

control one of the endpoints running some processing or synthesis algorithm.

Another use for control data typically found in networked laptop orchestras

[72, 73], is a broadcast of status messages, control parameters or data exchange

for multi-agent or distributed architectures. All these options are allowed by

WeMUST, as any device connected to the network can transparently send or

receive data to and from any other device. Connections and devices on the

network can dynamically change. Any device can be addressed by its IP ad-

dresses or hostname, and these can be discovered by use of the SABy protocol

[60] or Avahi.

One last noteworthy feature enabled by WeMUST is to ensure the musicians

the ability to synchronously play a score, by sending a metronomic click from

the MPC or a conductor device to the endpoints.
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Chapter 5

Real-Time Digital Signal Processing

Algorithms for Embedded Platforms

The previous chapter provided details on the development of a platform de-

voted to MAs such as NMP. Other MAs suitable to digital signal processing

are reported hereby from a theoretical standpoint with a focus on the port-

ing to embedded platforms and/or scalability. All these algorithms have been

tested on the WeMUST embedded platforms to various extents and different

outcomes.

5.1 The Discrete Wavelet Transform for Low

Computational Cost Algorithms

The DWT is a family of multi-resolution transforms, very common in many

fields of signal processing and employed in applications ranging from audio to

geophysics. Its importance stems from its good resolution in time and fre-

quency. Unlike DTFT, DFT and STFT it does not barely provide a linearly

spaced representation of the spectrum, which do not match the logarithmic

nature of the human ear, but gathers more detail where it is most needed,

i.e. at the low range of the human hearing. In the musical field its usage is

motivated by its multi-resolution spectral representation, which is similar to

some extent to the octave-spaced distribution of a musical scale. The DWT
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can be evaluated sample-by-sample or in frames1 of data, while the STFT is

computed only on a frame-by-frame basis. While the DWT presents extremely

good time resolution properties, the STFT needs overlapping, i.e. redundant

computation of overlapping frames, to increase its time resolution consistently.

Since the STFT is based on DFT computed for successive windowed frames, it

can employ FFT algorithms to speed up computation.

A brief overview on the DWT following the same notation used in [74] is

provided hereby. The DWT can be implemented in the digital domain as a

dyadic filter bank [75], shown in Figure 5.1

Figure 5.1: Flow graph representation of a J-level Discrete Wavelet Transform
(analysis part).

Moving from the following notation equalities:

Upsampling : (↑ x) [2n] = x[n], (↑ x) [2n+ 1] = 0,

Downsampling : (↓ x) [n] = x[2n]
(5.1)

G (gn approximation filter) (Gx) [n] =
∑
k

x[k]· g[n− k],

H (hn details filter) (Hx) [n] =
∑
k

x[k]·h[n− k]
(5.2)

where g̃[n] = g[−n]∗ is the paraconjugate operator, and k is the index of

the wavelet coefficients, looking at the decomposition part, it can be observed

that the original signal x[n] is processed through filtering and down-sampling

1not to be confused with the audio frame term used in Chapter 4 related to audio buffering
in Linux
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operations resulting in different sequences:

vj [k] =
∑
k

x[n]· h̃′j [n− 2jk], j = 1, ...., J,

vJ+1[k] =
∑
k

x[n]· g̃′J [n− 2Jk]
(5.3)

where g̃′j =
(
G̃′ ↑

)j−1
g̃′, h̃′j =

(
G̃′ ↑

)j−1
h̃′. Each of these sequences has

different length than the others; in more specific words, it means that their scale

and resolution values are divided by 2 at each decomposition level, consequently

reducing of the same factor the sequence length and the part of spectrum they

represent. This fact is directly related to the coverage of time/frequency plane

existing in continuous wavelet transform (CWT). The signal can be reassembled

from the coefficients through filtering and up-sampling operation:

x[n] =
J∑
j=1

∑
k

vj [k]hj [n− 2jk] +
∑
k

vJ+1[k]gJ [n− 2Jk] (5.4)

where gj = (G ↑)j−1 g, hj =
(
G̃′ ↑

)
j−1 h. However, since this filter bank is

critically sampled, used filters are constrained to satisfy the following condition

to achieve perfect reconstruction (without delay), here valid in case of a simple

two-band filter bank:

x[n]−G ↑↓ G′x[n] = H ↑↓ H′x[n]. (5.5)

This can be easily extended to the j-level decomposition case.

Of lesser interest due to a linearly-spaced spectral representation is the

wavelet packet decomposition, or DWPT (Discrete Wavelet Packet Transform).

This transform is similar to the DWT in that it uses quadrature mirror filters

with detail and approximation wavelet filter coefficients as those used in DWT,

but the bank tree is a full binary tree. The sub-bands output coefficients

(called WPEC, Wavelet Packet Energy Coefficients) all subject to the same

group delay and sampling rate. This property is thus of interest in some cases,

as discussed later. Figure 5.2 reports the SFG of the DWPT.

The computational costs of the DWT and WPEC are roughly similar. Fol-
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Figure 5.2: The Discrete Wavelet Packet Transfrom (analysis, or decomposition
fitler bank).
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5.1 The Discrete Wavelet Transform for Low Computational Cost Algorithms

lowing the assumption that real-valued sums and products require one CPU

operation, an FIR filter of order M requires (2M − 1) operations per input

sample. The computational cost of an M coefficients wavelet decomposition

down to level j is

CD =
j−1∑
i=0

2(2M − 1)
2i . (5.6)

Easily it can be shown that

lim
j→∞

CD = 8M, forM � 2, (5.7)

and this stands true already for low values of j. The value CD = 8M represents

an upper bound for computational complexity and overestimates computational

cost for very short filter kernels (e.g. Haar wavelet).

Similarly, the wavelet packet decomposition down to level j is

CD = 2(2M − 1) +
j−1∑
i=1

4(2M − 1)
2i → 12M forM � 2. (5.8)

Figure 5.3 reports the DWT and DWPT computational cost in terms of

operations per input sample for different values of j andM . As a reference, the

computational cost of a non overlapped STFT calculated by means of aM -bins

FFT algorithm over a window ofM samples is CF = 2Mlog2(M)−4M+6 [76,

77], i.e. approximately 2log2(M)−4 operations per input sample. Overlapping

may apply, introducing a increase inversely proportional to the overlap ratio.

The choice between STFT, DWT or DWPT should not be done based only on

the computational cost as they are meant for different applications and obtain

very different time-frequency representations.

5.1.1 The Discrete Wavelet Transform as a Morphing Tool

The DWT is usually employed as a (perfect reconstruction) filter bank to con-

duct processing in the transformed domain. In this section and in the next one,

however, two slightly different usages are shown.
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Figure 5.3: The computational cost of different DWT configurations. The com-
putational cost of the DWT is also reported.

In [78], a tool to conduct signal morphing or hybridization in the Wavelet

domain was reported and demonstrated. Hybridization is a family of techniques

to create a tone which retains some of the features of two original source tones,

while morphing is the dynamic change of a sound from a source tone to another

transitioning through a series of time intervals where the produced tone retains

some features of both. Ibrida, the software tool (based on Pure Data) reported

in [78] allows for both. The user interface for Ibrida is reported in Figure 5.4.

The algorithm reported in Figure 5.5 transforms two signals of equal sample

rate in the Wavelet domain, and sums the sub-bands of the two that have

equal sample rate. The result is the linear mix of the Wavelet coefficients of

the two signals, which can be transformed back in the time domain by inverse

DWT. Since the sum of the sub-band signals is a linear operation, the perfect

reconstruction property of the DWT-IDWT filter banks is guaranteed. The

effect generated by the weighted sum is a spectral mixing of the two signals,

such that for each subband it can be decided how much of the two source signals

to feed to the output.The algorithm provides several degrees of freedom. The
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weights of the linear mix can be modified for each branch to allow one of the

two sources to be predominant and the wavelet family can be chosen.
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Figure 5.5: The SFG of the Ibrida algorithm.

The evaluation of hybridization and morphing techniques is left as a future

work, since there is no objective method to assess the quality of a technique

with respect to another. Meaningful comparison can be done subjectively, if

the listeners are prepared to the topic and a set of criteria are given for the

evaluation. For an interesting overview and taxonomy of signal processing

techniques for morphing and hybridization refer to [79].

5.1.2 The Discrete Wavelet Coefficients as a Feature for

Onset Detection

As discussed the DWT collects coefficients in the transformed domain for each

subband or branch. The coefficients collected from each branch have differ-

ent sample rate (exception made for the lowest two details and approximation

sub-bands). For this reason practical implementation of DWT filtering or pro-

cessing is not obvious and requires some care. Even less obvious is the case

first introduced in [74] and further expanded in [80, 81], where the DWT co-

efficients are used as features for a musical note onset decision algorithm, and

thus are not transformed back in the original domain. This introduces a prob-

lem of alignment of the subband signals and of linking between these and the

original signal timebase to place correctly the onset instant related to the in-

put music signal. The alignment constraint simplifies the nontrivial task of
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selecting the Wavelet filter design method, since it imposes the filters to be

linear phase property, reducing the number of the design methods worth to

take into consideration. Linear phase FIR filters have the property of imposing

a constant phase delay, making it easy to align the subband signals by simple

sample shifting (no pun intended). Biorthogonal wavelets have the advantage

over orthogonal wavelets in that they can be designed to be linear (such as the

Haar wavelet) or nearly linear phase (such as the Coiflet). The Coiflet functions

[82] have been selected. The linear phase of other biorthogonal wavelets (see

e.g. [83], pp. 271-280) has been traded for a higher number of vanishing points

for a given order. Both contribute to increase the convergence properties of

subsequent linear prediction filters (later discussed). The nearly linear phase

property ensures anyway a negligible misalignment when aligning the filter ac-

cording to a constant sample shift, and the better convergence properties of the

Linear Prediction Error Filters (LPEF) cascaded to Coiflets DWT with respect

to the linear phase biorthogonal wavelets have been shown during experiments.

For the sake of clarity, the nearly linear phase property (or near simmetry)

stands when

φ(ω) = kω + o(ωN ) for ω −→ 0. (5.9)

Under this condition the group delay can be approximated to the one of a linear

phase filter, i.e. (N − 1)/2 samples, where N is the length of the FIR impulse

response. Once the filter delay is known, a simple synchronization mechanism

can be designed to align all the subsignals by simply applying different delays

for every channel. Since the delay increases while descending the decomposi-

tion tree and the sampling frequency decreases, the upper subsignals must be

compensated with higher delays, according to the following

d(j) = 2J+1−j
J+1−j∑
i=1

N

2i (5.10)

where d(j) is the delay to be added to channel j. By adding such a delay to

each channel, after the DWT filter bank, synchronization is granted in case the

subchannels are all resampled to the same sampling frequency.
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An approach similar to DWT which, however, does not pose problems of

alignment is the DWPT. The resulting signals are all decimated at the same

sampling frequency and can thus be employed directly without any alignment

or resampling issue. The output of the tree leaves are called Wavelet Packet

Energy Coefficients WPEC (not to be confused with the coefficients employed

by its FIR filters coefficients).

Both the DWT [80, 81] and the WPEC [84] approaches have been tested for

onset detection in different works, also paired with neural networks and other

spectral features. In [80, 81] the DWT has been used together with a LPEF

(Linear Prediction Error Filter), following the concept in [85]. Each sub-band

signal is processed by an LPEF whose coefficients are updated with each input

sample by a modified version of the Normalized LMS (NLMS) algorithm [86]

described below. The NLMS approach is chosen for its suitability to signals

with large energy variations, such as music signals. In order to detect onsets

by observing the prediction error, the step-size value for the j-th band, µj , is

crucial,

µj = µ′

|uj [k]|2 + c
(5.11)

where 0 < µ′ < 2, c is a small constant to avoid division by zero, uj [k] =

(dj [k − 1], . . . , dj [k − p])T represent the previous p input samples and |.| acts

as an estimate of the signal energy, which varies in time, making the step-size

varying as well. However, if the convergence of the filter coefficients is too fast,

the increment of the prediction error envelope at note boundary may became

less evident, thus, a large value of the step-size is not desired. The modified

step-size update considers silence regions (e. g., pitched non percussive), as

reported in [87]:

µ = min
(

A

rms[k] · p ,
1

|uj [k]|2 , 1000
)

(5.12)

where rms[k] is the root mean-square value of samples in a 20ms window

just after the k-th sample of dj [k]. The constant A is empirically set to 0.5.

The second term in the minimum operation ensures the convergence while
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the third term prevents the step-size from getting too large when the signal

energy becomes very small. An issue with the varying sampling frequency in

the different DWT sub-bands is that the order of the LPEF, p, should assume

different values depending on the sub-band sample frequency. For the highest

band pmax = 24 while for the lowest two bands pmin = 16. These parameter

values are defined as result of several preliminary evaluations.

The output of the LPEF in the transformed domain gives an estimate of the

novelty of the signal at a certain instant in a certain branch. Because of its

whitening properties, the DWT is shown to increase the convergence speed of

LMS adaptive filters in the transformed domain [88]. This provides a more

accurate localization of error peaks and, thus, of onsets. Furthermore, with

respect to a generic FIR filter bank the DWT filter have very short impulse

responses.

To make a decision, it is necessary to combine signals from the sub-bands,

i.e. resampling to a reference sample rate and then feeding those to a decisor.

The reference sample rate has been chosen at least one order of magnitude

inferior to the original signal one, since generally in note onset detection the

time resolution need not be larger than 10 ms. The decisor can then combine

them according to some logic or accept multiple signals. The latter case is of

particular interest as complex Computational Intelligence techniques can be

employed, e.g. Bidirectional Long Short-Term Memory (BLSTM) recurrent

neural networks (NN) [89], which can be trained automatically on different

databases to suit different genres without the need for a manual trial and error

procedure to characterize coefficients. During experiments the BLSTM recur-

rent NN were employed to benchmark different feature extraction algorithms.

It was shown that traditional feature extraction methods based on DFT-based

spectral techniques are outperformed by the aforementioned Wavelet-domain

LPEF coefficients and the Auditory Spectral Features (ASF), which are Mel

spectrograms with two different time resolutions. As it often happens with NN

adding dimensionality to the input can increase the NN performance. Employ-

ing both Wavelet-domain LPEF coefficients and ASF yields a higher accuracy

of onset detection compared to the two techniques alone.
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Similarly, in [84], the WPEC features are fed to BLSTM or other NN con-

figurations to seek for the best detection accuracy. In both approaches, the

DWT+LPEF and the WPEC have been tested alone, or combined with ASF.

The tests have been performed for various combination of features and neural

networks on the same datasets. The results, thoroughly listed in the related

publications, show that the DWT+LPEF approach perform slightly better than

the WPEC alone. Let the metric be

F-measure = 2·Precision·Recall
Precision + Recall (5.13)

with

Precision = CD/(CD + FP), (5.14)

Recall = CD/(CD + FN) (5.15)

where CD is the number of correctly detected onsets, FP the number of false

positives and FN the number of false negatives. For a given BLSTM configu-

ration the WPEC obtains 0.9 and 0.84 F-measure (depending on the tolerance

window employed for evaluation of the results), while the DWT+LPEF reach

0.933 and 0.892 F-measure. The additional use of ASF complements the miss-

ing information to the BLSTM, providing very similar results, 0.941 and 0.906

F-measure for theWPEC+ASF, and 0.942 and 0.910 for the DWT+LPEF+ASF.

Notwithstanding the long history in NN research, NN implementation in

embedded electronics is very rare. One relatively new option is to employ gen-

eral purpose GPUs for NN algorithms [90]. GPUs provide a large speed up

in neural network computation and can be foreseen as a remarkable improve-

ment in the implementation of NN for daily tasks, since GPUs are available

nowadays in both personal computers and mobile devices. However, compu-

tational approaches that do not employ NN are at the moment much more

low on computational requirements and are better suited to embedded imple-

mentation. The DWT+LPEF approach described in [74] provided satisfying

results without resorting to highly-expensive Computational Intelligence tech-
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niques. The sub-band LPEF signals were multiplied, as in multi-scale product

algorithms. The onset decision was performed by comparing the product of a

signal energy approximation with the signal first order difference with a given

threshold. Figure 5.6 reports graphically the overall algorithm.

5.2 Novel Second Order Filter for Virtual Acoustic

Feedback Emulation

In the field of Computational Acoustics, a topic which has been scarcely ad-

dressed is that of Acoustic Feedback (AF) emulation. While acoustic feedback

and echo removal is extensively treated in the Digital Signal Processing field

for communication equipment, hearing aids and professional audio components,

there is a handful of works regarding the emulation of AF as an expressive tool,

or an inspiration for tone generation. In [91], the acoustic feedback is studied

in the case of an electric guitar and an amplifying device. A database of records

is discussed. The effect of interest originates from the feedback stimulation of

the guitar string with the acoustic wave propagating from the amplifier and

originated by the string itself. After rising, the feedback gets stable to a target

amplitude, depending on several factors. This is due to the nonlinear nature of

electronic amplifiers, which saturate over a certain signal threshold. There are

other cases of acoustic feedback involving a guitar and an amplifying system

which are annoying and are not employed for musical purposes. In these cases

the coupling does not include the string. When the coupling includes the strings

the effect is musical since the oscillation originating from the feedback takes

place at a harmonic interval of the fundamental frequency of the string. In

[91] and [92] digital implementations of the Virtual Acoustic Feedback (VAF)

effect are discussed, originated from the emulation of the electric guitar case,

but extending to unexplored scenarios. Being the most well known musical

use of acoustic feedback, the guitar howling as been taken as a reference and

inspiration. The typical setup, involves an electric guitar as sound source and

a nonlinear amplifier with loudspeaker. A constructive feedback is generated
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Figure 5.6: Overview of the onset detection algorithm targeted to embedded
implementation (a). The adaptive filtering process (b) and the
detection process (c).
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when the sound pressure waves couple with one of the guitar strings. For the

coupling to be remarkable the travelling waves must be in phase with the string

and their amplitude high enough to overcome the string mechanical resistance

and sensibly excite the string (either fretted or open). The coupled string acts

as a resonator. As a corollary, it must be noted that howling can rise only at

a multiples of the fundamental F0 of the string.

The system response from the guitar to the loudspeaker can be considered

slowly time-varying (unless time-varying guitar effects are employed). The

only portion of the system which can vary remarkably is the path between the

musician and the loudspeaker. In a closed or even semi-anechoic environment

there will be several paths able to sum in phase with a specific string. The

howling will take place if at least one of the paths will violate the Barkhausen

stability criterion [93], i.e. for a certain frequency ω0 :

A(jω0)G(jω0) = 1⇒

 |A(jω0)G(jω0)| = 1

∠A(jω0)G(jω0) = 0
(5.16)

where A(jω) is the direct path transfer function (instrument to loudspeaker)

and G(jω) the feedback path transfer function (loudspeaker to instrument).

If several paths are unstable, most likely one feedback path (i.e. one howling

frequency) will prevail among the others, since, in unstable conditions, small

deviations in the loop gain or phase delay will result in substantial amplitude

difference between the paths after a sufficiently large amount of time. This has

been experienced by computer simulations based on Sullivan’s method. Tests

have been conducted using Sullivan’s method to gather insight on the guitar

feedback phenomenon. Figure 5.7 compares a recorded A2 tone with howling

rising at the 5th partial, and a simulated counterpart of similar characteristics

employing a DWG guitar model as the sound source.

A good practice for digital effects design is to write down a specifications

for the usability and control requirements, besides the technical specifications

regarding the implementation. After evaluation of a database of tones recorded

in a semi-anechoic chamber, some desired features to replicate guitar howling

and introduce more practical control were:
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(a) Recorded guitar howling

(b) Simulated guitar howling

Figure 5.7: Comparison of the spectrograms of a recorded guitar howling (a),
and a simulation using Sullivan’s method (b). Both tones are A2
(110Hz) with howling occurring at the 5th partial.

• to obtain a stable oscillation with peak amplitude limiting,

• to give a precisely tunable frequency of oscillation fo at a multiple of the

incoming fundamental frequency F0,

• to emulate the nonlinearities (e.g. distortion, strings nonlinearities, etc.),

• to select the rise time,

• to select the amount of the effect, i.e. a dry/wet gain.

The problem under investigation can be generalized in terms of oscillators.

In literature there are examples of digital oscillators mainly devoted to vir-

tual analog modelling [94] or physical modelling of passive structures [95, 96].

While the former are generally complex and computationally expensive, the

latter do not apply to the current case, which is not passive and may exhibit

growth as well as decay. In order to fulfill the specifications introduced above,

a positive feedback oscillator, depicted in Figure 5.8, can be employed. This

oscillator consists of a selective bandpass filter in positive feedback G(ω), to
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select the desired harmonic and a memoryless nonlinear component β(·) to

engage oscillation and prevent instabilities.

Figure 5.8: General scheme of a digital oscillator with nonlinearity β(·) and
bandpass transfer function G(z).

Linear Filter Design

The nonlinear component of the oscillator is neglected (i.e. β = 1) in order to

design the coefficients of the linear part and obtain the overall transfer function

H(z) of the oscillator.

The bandpass filter must be selective enough to reject all harmonics beside

the desired one. Second-order designs are sufficient for this task. However,

when placed in a feedback loop, problems of computability may arise. Let

G(z) = B(z)/A(z) be the bandpass transfer function and H(z) = N(z)/D(z)

be the entire oscillator transfer function. If the bandpass direct path filter

coefficient b0 is not null, the output y[n], passing through the bandpass direct

path, is fed back without any delay, making the system output impossible to

compute in a discrete time environment. By observing that the oscillator always

has a direct signal path to the output, n0 = 1, the original solution proposed

here is to design the bandpass filter to have B(z) with first coefficient b0 = 0.

This ensures computability and does not affect the oscillation frequency of the

oscillator. The frequency response of the oscillator in Figure 5.8 is that of a

peaking filter.

In general the oscillator poles will differ from the bandpass poles, hence
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the filter center frequency fc and the oscillator frequency fo will differ. The

oscillator transfer function, is:

H(z) = A(z)
A(z)−B(z) . (5.17)

The higher the bandpass bandwidth, the higher the B(z) coefficients will be,

thus the difference between fo and fc will increase. To prevent this drift, the

H(z) can be designed first, and then the G(z) evaluated accordingly. The pro-

posed method consists in the design of a peaking Butterworth design centered

at the desired fo and with desired BW , yielding numerator and denominator

N(z), D(z). The G(z) will be then evaluated as:

A(z) = N(z); (5.18)

B(z) = N(z)−D(z). (5.19)

The Butterworth peaking design ensures the first coefficient of the numerator

n0 = 1, thus, from Eqns.5.17,5.18 the first coefficient of B(z) will be always

b0 = 0, ensuring computability of the oscillator.

The oscillator must be causal and stable. Stability is always guaranteed,

provided the initial filter design is stable. Proof of this can be gathered if

considering the poles of H(z), given by D(z) = A(z) − B(z). The bandpass

poles are always inside the unit circle by design, and only approach unity with

BW → 0, while its zeros can always be designed to be nonnegative. The roots

of D(z) are, thus, always inside the unit circle.

Nonlinear Oscillator Properties

In electronic oscillator design practice [97], a positive feedback oscillator makes

use of a frequency independent amplifier, with nonlinear function β(·), typi-

cally a saturating nonlinearity, such as the hyperbolic tangent. The amplifier

behaviour at small signals can be considered linear, i.e. a constant gain As,

which saturates, i.e. reduces up to zero for increasingly large signals. It is

frequent to study such a circuit as a quasi-linear system, i.e. study how the
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linear system transfer function is affected by the nonlinearity [98].

The nonlinearity, in fact, has an impact on the oscillator poles position in

the complex plane. As a corollary, the more the signal amplitude increases, the

more the oscillator behaviour deviates from the linear one. Specifically the fo
may shift from the desired value depending on the signal amplitude, i.e. the

loop gain.

Let the variable gain imposed by β(x) be considered constant for an ap-

proximately linear region, and β be that constant gain, the oscillator transfer

function is

Hnl(z) = βA(z)
A(z)− βB(z) , (5.20)

i.e. the poles frequency deviates from the linear case as a function of the

gain β, which in turn depends on the input signal amplitude.

The roots of the denominator can be evaluated for increasing values of β.

Figure 5.9 shows the skew in cents of semitone at increasing values of signal peak

amplitude and increasing bandwidth. This frequency skew is not desirable,

but for any input peak amplitude and BWs of up to 1/5 the frequency skew

is lower or comparable to the just-noticeable difference [99], i.e. the minimum

pitch interval that can be discriminated by the human ear. If the frequency

estimation method is sufficiently reliable the bandwidth can be generally chosen

large enough to compensate for the estimate tolerance.

Figure 5.9: Nonlinear oscillator fo skew in cents of semitone, with respect to
a desired fo of 500 Hz, function of the bandwidth of the G(ω) and
the input signal peak amplitude. The three curves correspond to a
bandwidth of 25 Hz, 50 Hz and 100 Hz.

Finally, the amplitude, rise time and slope can be set by the musician with
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5.2 Novel Second Order Filter for Virtual Acoustic Feedback Emulation

the use of a gain Gp cascaded to the oscillator and its complimentary 1 − Gp
cascaded to the dry signal path. The oscillator loop is closed only when an

onset is triggered and a pitch detected, as the positive feedback oscillator can

start oscillation with small input signals. The proposed oscillator is depicted

in Figure 5.10.

Figure 5.10: The proposed digital second-order oscillator. hd is the desired
partial for howling onset.

Since the tanh(·) function is odd, only odd harmonics will take place in

the distorted signal. In musical applications, a distortion function should also

generate even harmonics. In principle additional distortion components can be

applied to the output signal y[n]. However, if the howling harmonic distortion

is required to keep low, any memoryless waveshaping function can be used,

provided it is bounded. Performed experiments show that an asymmetrical

bounded function such as that from Doidic et al. ([100], Eq. (3)) poses no

problems to stability and sustained oscillation. When distortion modelling

blocks employing components with memory, are desired inside the loop further

stability and frequency skew studies are required. One rather simple method

for this is that of the describing function [101].

In a real scenario the oscillator needs note information to tune on the de-

sired partial, thus, when the sound source is external a frequency estimator
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algorithm is needed to extract pitch information, often paired with a real-time

onset detection algorithm. Given the low computational cost and latency of

the oscillator, the choice of the pitch estimation algorithm is critical, given

the real-time constraints on latency and computational cost. One approach

often employed in the recent literature is an algorithm named SNAC (Specially

Normalized Autocorrelation)[102]. A spectrogram obtained from simulations

is shown in Figure 5.11. Virtual acoustic feedback can be triggered on a wide

class of pitched instruments, including human voice. More research material

and audio examples are available online 2.

Figure 5.11: Spectrogram obtained from a simulated howling. A2 tone (110Hz)
with howling at 550Hz (5th partial).

At the end of this section, it is of interest to note the requirements - system-

wise - of this algorithm, which are similar to those of other algorithms for MAs

in Section 5.3. First of all, the structure has a very low computational cost

(a second order section and a nonlinearity, which can be implemented, e.g.

as a look-up table with interpolation). Depending on the use case, however,

it may be necessary to add a pitch estimation algorithm to track the current

F0 and tune the digital oscillator accordingly. The computational cost of the

pitch estimator is generally much higher than the digital oscillator itself, re-

quires to work with with very low latency and process short buffers to keep

steady as possible. Often, to obtain low tracking latency and low computa-

tional cost a trade off with the tracking accuracy must be found. To increase

tracking accuracy some heuristics may be applied (e.g. filter out unexpected

pitch variations) which, however often rely on branching or high computational

complexity algorithms (e.g. sorting). The presence of a feedback, furthermore,
2a3lab.dii.univpm.it/projects/vaf
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5.3 Towards a Comprehensive Musical Instrument Modelling

does not allow, in general, plain code parallelization as any output sample de-

pends recursively on previous samples. Finally, for real-time implementation,

one important requirement is that input-output latency is very low, meaning

that processing must be executed on short buffers.

5.3 Towards a Comprehensive Musical Instrument

Modelling

Relevant academic contributions of the candidate to the field of Musical Instru-

ment Modelling are [103, 104, 105, 106, 107]. Most of these deal with stringed

instrument modelling. Although this topic is covered by a large number of es-

says, books and papers a formalism for the string wave equation is provided for

the sake of clarity, and the novel contributions of the candidate are discussed

in the sections to follow.

The one-dimensional wave equation for an ideal vibrating string is:

K
∂2y

∂t2
= ε

∂2y

∂x2 (5.21)

where t is the time variable, x is the space variable, y(t, x) is the string

displacement function, K is the string tension, and ε is the mass density of the

string. The solution of the wave equation can be written [108]:

y(x, t) = y+(x− ct) + y−(x+ ct) (5.22)

where y+(x − ct) and y−(x + ct) represent the progressive and regressive

waves traveling with speed c =
√
K/ε.

In the discrete-time domain the wave equation solution takes the following

form:

y(n,m) = y+(n,m) + y−(n,m) (5.23)
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where the time and space variables n and m are discretized as shown below:

t = nT for n = 0, 1, 2, ...

x = mX for m = 0, 1, 2, ... (5.24)

where T is the time sampling period and X is the space sampling period,

the two related by the following equation:

X = cT. (5.25)

Such a solution of the ideal travelling wave equation is employed in Digital

Waveguide synthesis together with other processing blocks that model addi-

tional features or departures from the ideal case. Introduced in the 1980s

[109, 108], it has become very popular due the good trade-off between sound

quality and low computational cost. For a review on DWG synthesis techniques

refer to [110, 111].

Departing from the ideal string model of Eq. 5.21, stiff metal strings present

dispersion and frequency dependent losses [103]. The wave equation in stiff

strings with frequency dependent losses is characterized by the following [112]:

∂2y

∂t2
= c

∂2y

∂x2 − λ
∂4y

∂x4 − 2σ0
∂y

∂t
+ 2σ1

∂y

∂t

∂2y

∂x2 (5.26)

where λ is a stiffness coefficient, σ0 the frequency-independent loss coefficient

and σ1 the frequency-dependent loss coefficient.

To directly solve such a string model, without resorting to filters or processing

blocks, other synthesis methods are required, such as FDTD ones.

5.3.1 Mixed Physical Models

DWG methods for sound synthesis are based on a set of assumptions which en-

able to reduce the computational cost, yet allow to approximate the travelling

wave equation solution. These assumptions are not always acceptable. FDTD

methods, on the contrary, evaluate the wave equation at a discrete set of spa-
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5.3 Towards a Comprehensive Musical Instrument Modelling

tial points taking into consideration boundary conditions, physical parameters

such as string density and thickness and removing some of the hypotheses of

DWG methods. Boundary conditions also allow to model the exact behavior

of physical variables in time, such as collision and contact.

First introduced in sound synthesis by Hiller and Ruiz [113, 114], FDTD

methods find application not only for one dimensional problems but also for

2-D and 3-D meshes [112, 115].

A simple FDTD model, suited to solve the wave equation with losses Eq.

5.21, is the central differences scheme characterized by the following equation:

yk,n+1 = g+
k yk−1,n + g−k yk+1,n + akyk,n−1 (5.27)

where g+
k , g

−
k and ak are loss parameters. Such a scheme has been referred to

by the author as first order FDTD scheme (FOFS), to highlight the dependence

of a sample from only the neighboring spatial samples one step forward and

backward.

z-1 z-1 z-1

z-1 z-1 z-1

ak-1 ak ak+1

g+k-1 g-k-1 g+k g-k g+k+1 g-k+1

yk-1,n+1 yk,n+1
yk+1,n+1

yk-1,n

yk-1,n-1

yk,n

yk,n-1

yk+1,n

yk+1,n-1

Figure 5.12: FOFS for a 1-dimensional wave equation (from [1])

Frequency independent losses can be added to the model by choosing values
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for the filter coefficients as in [116]:

g+
k = g−k = 1− dk (5.28)

ak = 2bkdk − 1 (5.29)

where dk and bk are loss factor. For the stability of the waveguide 0 ≤ dk ≤ 1

and 0 ≤ bk ≤ 1.

As mentioned above, stiff metal strings follow Eq. 5.26 and need higher

complexity schemes [113, 112]. A rather simple scheme showing good properties

and solving the Partial Difference Equation 5.26 for low stiffness values is the

following second order FDTD scheme (SOFS) [117]:

yk,n+1 = a0yk,n + a1(yk+1,n + yk−1,n) +

+a2(yk+2,n + yk−2,n) + b0yk,n−1 +

+b1(yk+1,n−1 + yk−1,n−1) +

+J(fh) (5.30)

where fh is the force impressed on the string by a hammer. The time sample

period k is the inverse of the sampling frequency, which also determines a grid

spacing h. To ensure stability k and h must verify Equation 5.31:

N = floor(L/h) (5.31)

where N is the length of the string in sample, L the length of the string in

meters. It is very important to note that in a finite difference setting, h and k

must be related by the numerical stability condition:

h ≥ kc. (5.32)

Loss coefficients in 5.30 can be evaluated according to [104]. A block scheme

for the described SOFS is reported in Figure 5.13.
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z-1 z-1 z-1 z-1 z-1

z-1z-1z-1z-1z-1

a2

a1

b1

b0

a2

a1

b1

a0

Figure 5.13: Block scheme of a SOFS model.

Mixed modeling can join the benefits of both the DWG and FDTD ap-

proaches, i.e. a good trade-off between computational cost (provided by model-

ing propagations with a DWG model) and sound quality (provided by modeling

the string excitation mechanism with a FDTD model). A proof-of-concept of

DWG and FDTD mixed modeling has been given in previous works, where a

FOFS model have been considered [115, 118]. Metal strings, however are more

accurately emulated with SOFS FDTD. A matching filter has been devised in

[104] that is able to connect two strings parts of a string modelled with the two

approaches. Let the first section of the string be emulated with FDTD and the

second section in DWG, the last FDTD spatial point will be k and k + 1 the

first DWG spatial point. The right-going wave at the interface is described as:

y+
k+1,n = y−k+1,n−1 + gyk,n (5.33)

where y+ and y− are the right-going and the left-going wave respectively,

n is the temporal sample and g is the loss coefficient for the DWG model.
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Similarly, the physical displacement wave on the 1-D FDTD side is related to

the traveling waves inside the DWG section as follows:

yk,n+1 = a0yk,n + a1(yk−1,n + yk+1,n) +

+b1(yk−1,n−1 + yk+1,n−1) +

+b0yk,n−1 + a2(yk−2,n + yk+2,n) (5.34)

Equations 5.33 and 5.34 represent the interface conditions for perfect match-

ing of traveling waves. The block scheme of the adaptor and the mixed model

is represented in Figure 5.14.

z-1 z-1 z-1

z-1 z-1

z-1z-1

z-1z-1z-1

a2

a1

b1

b0

a2a1

b1

z-1

g

FDTD DWG

a0

b0

g

g

Figure 5.14: The mixed model consisting in the SOFS (left), the adaptor (cen-
ter, highlighted) and the DWG (right).

Considering that each spatial sample in the SOFS (5.30) requires 6 products

and 9 sums. For a string 14 cm long this leads to 42 products and 63 sums

per sample. For a string of 93.4 cm this yields 300 products and 450 sums per

sample. Compared, the computational cost of similar strings in a DWG model

for the short string is 60 products and 57 sums per sample, while the long string

requires 95 products and 77 sums per sample. In the mixed model the adaptor

position is configurable, yielding to different computational costs. Increasing
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the FDTD string length requires to decrease the DWG string length and vice

versa. Figure 5.15 compares the computational costs of the FDTD, DWG and

mixed model for the strings F1, E2, E4, E5, E6 of a Hohner Clavinet with the

DGW and FDTD emulating 50% of the string each.

F1 E2 E4 E5 E6
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Figure 5.15: The two figures represent in order the number of products and
sums for the DWG, the FDTD and the mixed Clavinet models for
the notes F1, E2, E4, E5, E6.

5.3.2 Expressive Physical Modelling: the Hohner Clavinet

Contributions to the field of sound synthesis may not only come from advance-

ments in the basic building blocks of a system, but also from thorough analysis

and parametrization of synthesis parameters. Several works from the author
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dealing with Hohner Clavinet instrument emulation are summarized in [103].

The results of analysis and advancements in the parametrization and synthesis

of that instrument are reported. The modelling of such instrument has been

covered, to date, by only few other works apart from those of the author [117].

Analysis of a stringed instrument covers many aspects, from build charac-

teristics, to acoustic features and operating phenomena. For an electroacoustic

instrument additional elements of interest are transducers and electronics. The

Clavinet, for instance, shown in Figure 5.16, has metal strings transduced by

magnetic pickups. It also includes an amplifier stage, with tone control and

pickup switches. The pickups and amplifier are required because the Clavinet

strings emit a very feeble sound and the metal keybed, differently from the

piano soundboard does not efficiently radiate the sound. The pickups intro-

duce several effects on the resulting sound [119], including linear filtering, non-

linearities [120] and comb filtering [110, 121]. Some of these effects have been

studied in [107].

Prior to any investigation, a Clavinet D6 has been recorded in a quiet envi-

ronment with professional equipment and a large database of tones has been

created. Recordings include Clavinet tones for the whole keyboard range, with

different pickup and switch settings. Automated analysis were run to obtain

several acoustic features for each key.

Properties of the time-domain displacement wave and the excitation mech-

anism have been inferred by assuming the pickups to be time-differentiating

devices [120]. The instruments, indeed is of electroacoustic nature and it is

not possible to record the acoustic tone from the radiating string with a mi-

crophone without also picking the additional noise of the key mechanics which

masks the attack of the tone. A very robust and reliable method to obtain the

string displacement would rely on a laser transducer, which however was not

available at the time the tests were conducted.

Another peculiar feature of the Clavinet with respect to more well-known

instruments, is the way the tangent action strikes the string, separating it into

two sections, in jargon the speaking part of the string (i.e. the one transduced

by the pickup) and the non-speaking one, which is damped by yarn. When the
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Figure 5.16: A schematic view of the Clavinet, (a) top; (b) side. Parts: A) tan-
gent, B) string, C) center pickup, D) bridge pickup, E) tailpiece,
F) key, G) tuning pin, H) yarn winding, I) mute bar slider and
mechanism, and J) anvil.
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key is released, the speaking and non-speaking parts of the string are unified,

giving rise to a change in pitch. This transient is of short duration thanks to

the yarn damping. Given the geometry of the instrument the pitch decrease

after release is 3 semitones for the whole keyboard. A spectrogram of the tone

before and after release is shown in Figure 5.17.

Figure 5.17: Spectrogram of the tone before and after key release. The key
release instant is located at 0.5s

Another perceptually important feature of a string sound is the inharmonicity

[2], due to the lightly dispersive character of wave propagation in strings. The

strings are metal strings similar to those seen in electric guitars and the likes.

Several methods exist for inharmonicity estimation [122]. In order to quantify

the effect of string dispersion, the inharmonicity coefficientB must be estimated

for the whole instrument range. Theoretically the exact pitch of the partials

should be related only to the fundamental frequency and the B coefficient[123]

by the following equation:

fn = nf0
√

(1 +Bn2) (5.35)

where fn is the frequency of the nth partial and f0 is the fundamental frequency.

However, a different estimate method based on a mean value was chosen since
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empirical analysis of real tones shows a slight deviation between the measured

partial frequency and the theoretical fn, and thus a deviation value Bn can

be calculated for each partial related to the fundamental frequency by the

following:

Bn = f2
n − n2f2

0
n4f2

0
(5.36)

obtained by reworking Equation 5.35 and replacing the overall B with a sep-

arate Bn for every nth partial. For practical use a number of Bn values mea-

sured from the same tone are combined to obtain an estimate of the overall

inharmonicity. A way to obtain this estimate is to use a criterion based on

the loudness of the first N partials (excluding the fundamental frequency), as

described below.

The partial frequencies are evaluated by use of a high-resolution FFT (Fast

Fourier Transform) on a small segment of the recorded tone. The FFT coef-

ficients are interpolated to obtain a more precise location of partial peaks at

low frequencies. The peaks are automatically retrieved by a maximum finding

algorithm at the neighborhood of the expected partial locations for the first

N partials and their magnitudes in dB are also measured. The fundamental

frequency and its magnitude are estimated as well. The Bn coefficients are

estimated for each of the N partials using the measured value for f0 to take

a possible slight detuning into account. For a perceptually motivated B esti-

mate the Bn estimated values are averaged with a weighting according to their

relative amplitude.

The B coefficient has been estimated for eight Clavinet tones spanning the

whole key range by evaluating the Bn coefficients for N = 6, i.e. using all the

partials from the 2nd to the 7th. Linear interpolation has been used for the

remaining keys. The estimate of the B coefficient for the whole keyboard is

shown in Figure 5.18 and plotted against inharmonicity audibility thresholds

as reported in [2]. From this comparison it is clear that inharmonicity in the

low keyboard range exceeds the audibility threshold and its confidence curve,

meaning that its effect should be clearly audible by any average listener. For

high notes, the inharmonicity crosses this threshold, making it unnoticeable
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to the average listener, and hence may be excluded from the computational

model.

Figure 5.18: Estimated inharmonicity coefficients (bold solid lines with dots)
for the whole Clavinet keyboard range against audibility threshold
(solid line) and confidence bounds (dotted line) evaluated in [2].
The discontinuity between the 23rd and the 24th keys is noticeable
at approximately 150Hz.

* * *

The computational model for the Clavinet devised in [103] is rather complex,

as many building blocks have been added to the simple DWG string model

introduced in Section 5.3. An high-level SFG is depicted in Figure 5.19.

The DWG model consists of the delay line, which is split into two sections

(z−(LS−R) and z−R) in order to add a comb filter embedded in the delay line,

called ripple filter. The DWG loop includes the one-pole loss filter [124]Hloss(z)

which adds frequency dependent damping, and the dispersion filterHd(z) which

adds the inharmonicity characteristic to metal strings. The fractional delay

filter F (z) accounts for the fractional part of LS which cannot be reproduced
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Note On

Key Velocity

Note Off

knock

Excitation

Hd(z)

z-LNS

z-(LS-R) z-R

r

F(z) Hloss(z)

BEQ Pickups

Pickup Select

Amplifier

Tone Switches

Figure 5.19: Signal flow for the complete Clavinet model.

by the delay line. While the Clavinet pitch during sustain is very stable, and

thus there is no need for changing the delay length, a secondary delay line,

representing the non-speaking part of the string, is needed to model the pitch

drop at release. This delay line z−LNS is connected to the DWG loop at release

time, to model the key release mechanism. To excite the DWG loop there is the

excitation generator block, named Excitation, which makes use of an algorithm

described in [105] to generate the excitation signal related to key velocity and

data on the tangent to string distance. This is triggered just once at attack

time.

Several blocks are cascaded in the DWG loop. Since the DWG model de-

scribed above only models the longitudinal string vibration mode, a beating

equalizer [125] (BEQ), composed of a cascade of selective bandpass filters with

modulated gain, emulates the beating of the partials and completes the string

model. Then, the Pickup block emulates the effect of pickups, while the Am-

plifier emulates the amplifier frequency response, including the effect of the

tone switches. The study of the pickup nonlinearity is of interest and has been

reported in [107].

Coil pickups, such as those used in guitars, have been addressed first in

[126] and [120]. Paiva et al. conducted thorough studies on the magnetic non-

linearity of the pickup and how to model it in [119]. Specifically, it adds a

combination of linear and nonlinear effects. The effect of their position is that

of linear comb-filtering due to the reflection of the signal at the string termi-
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Figure 5.20: Simulation of the magnetic flux against vertical displacement:
magnetic flux variation against vertical displacement for a string
passing over the pickup center (dashed line) and vertical displace-
ment for a string passing over the edge of the pickup (solid line).

nation. Pickups also have their own frequency response given by their electric

impedance and the input impedance they are connected to [127]. The rela-

tion between the string displacement and the voltage generated by the pickup

induction mechanism is nonlinear due to factors such as the nonlinear decay

law of the magnetic dipole field. Nonlinearities in the displacement to volt-

age ratio have been evaluated by means of a software simulation in Vizimag,

a commercial electromagnetic simulator. Simulations have been carried out

for different string gauges, string to pickup distance and horizontal position of

the string with respect to the pickup. Vibration in the horizontal and vertical

polarizations has been measured separately, resulting in a negligible voltage

generated by the horizontal displacement (25 dB lower than the vertical dis-

placement). The string oscillation was 1mm peak-to-peak wide, which is the

maximum measured oscillation amplitude. Simulations show that the magnetic

flux variation in response to vertical displacement has a negative exponential

shape (Figure 5.20), in accord to previous works [126, 120, 119]. Finally the

frequency response of the displacement to voltage ratio is that of a perfect

derivative.

To conclude the overview of the Clavinet model, a knocking sample of the

soundboard hit by the tangent is triggered at each note attack to reproduce

that feature of the Clavinet tone. This is similar to what has been done for the
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emulation of the clavichord [128], an instrument that shows some similarities

with the Clavinet.

The theoretical computational cost of the complete model can be estimated

for the worst case conditions and is reported in Table 5.1. The worst case

conditions occur for the lowest tone (F1), which needs the longest delay line and

the highest order for the dispersion filter. The latter depends on the estimate

of the B coefficients made during the analysis phase and the parameters used

to design the filter. With the current data the maximum order of the dispersion

filter is eight.

Table 5.1: Computational cost of the Clavinet model per sample per string.
Block Multiplications Additions
Fractional Delay Filter 2 2
Dispersion filter 4 × 5 4 × 4
Loss filter 2 1
Ripple filter 1 1
Soundboard knock w/ LPF 3 2
Beating equalizers 2 × 7 2 × 7
Pickups 9 5
Amplifier and Tone switches 21 15
Total per string 82 64
Total FLOPS per string 6.4MFLOPS at 44100Hz

How computational cost translates to Real Time factor or CPU load on an

embedded platform is discussed in Section 2.3.

5.3.3 Parametrization and Subjective Evaluation

Most of the computational acoustics field academic works cover DSP techniques

and their advancements. In order for research to sustain the practical realiza-

tion of physical modelling products other topics need be addressed properly, in

the author’s opinion. Subjective evaluation of synthesis techniques, architec-

tural design and low-level optimization, design and presentation of parameter

ontology and sound organization and most of all digital platforms for digital

music instruments. As to the last point, the author sought a partial answer

along the lines of this essay and more is discussed in Chapter 6. However, the
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other topics require much attention. Low-level optimization is a good topic for

research. Although to the “consumed” DSP programmer it may seem a matter

of practice, nothing related to compiling and optimizing is out of the scope of

research. Just the opposite: microarchitectures and compilers evolved thanks

to a great deal of research effort, and programmer often lack a scientific ap-

proach to code optimization. Not to mention the illiteracy of some researchers.

In the process of providing comments to a physical modelling paper, a reviewer

harshly stated

“do people still care about memory occupation nowadays?”

Of course they do. Implementing full-polyphony DWG models on an embed-

ded DSP, with 32KB level 1 cache and 64KB level 2 cache, considering that

each voice may require more than 1KB to be accessed at each iteration may

not be trivial and may require some optimization or careful design. Specifi-

cally, the main issue, to allow for a full-polyphony, is having all the relevant

data at hand, i.e. in L1 cache, including filter coefficients and the delay line

content. Moving data back and forth between different cache levels or even

external storage (this is still the case with sampling synthesis too) can lead

to wasting clock cycles without data processing, and badly affects polyphony.

Parametrization is a rarely explored topic too, at least in applications related to

musical instruments emulation, which do not gather the interest of very active

communities such as the computer music one. In essence, this chapter provides

some more introspection related to subjective listening tests and industrial im-

plementation of physical modelling synthesis, without aspiring to have the last

word on any of these.

The effort of providing physical modelling techniques to the end user spans

several project cycles and professional competences. A rather general abstrac-

tion of such a process is provided in Figure 5.21. The diagram lumps the devel-

opment of the computational model and its parametrization in a few steps and

highlights how it intersects some of the hardware and software development

steps. All cycles of software and hardware engineering remain unchanged with

respect to other industrial applications.
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ProductSpecifications
Choice ofSynthesis Technique

ComputationalRequirements Estimate
ComputationalModel Development

Listening Tests
Analysis and AutomaticParametrization

Listening Tests
Manual Calibration of the Parameters

Listening Tests
Patches and Memories

Computational ModelImplementation

ControlImplementation

CalibrationFrontend

R&D Management/Strategic Marketing
Development Team
Research Team
Musicians TeamHardwareDevelopment

Figure 5.21: A schematic diagram representing the typical development cycles
of a computational model for sound synthesis.
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A brief list of the development phases follows:

• Product specifications are agreed and between the strategic marketing

team, the company management and the R&D (Research and Develop-

ment) management.

• From the constraints and the goals reported by the product specifications,

a solution is agreed with the research team about the synthesis technique

to use.

• Given a specific set of features and the synthesis technique(s) the compu-

tational requirements are estimated by the development team that also

starts to develop the hardware following the computational requirements.

• The model starts being developed by the research team. This proce-

dure draws from a thorough analysis of the physical behavior of the real

instrument or prior academic knowledge. The computational model is

then translated to an algorithm, passed on to the development team for

implementation on the target platform. To assess the timbre quality of

the model it may be developed in a prototyping platform such as Mat-

lab, C/C++, or directly on the target platform. Listening tests and

audio analysis are of the highest importance to assess whether the com-

putational model devised by the research team is able to reproduce the

salient features of the real instrument, at least (at this early moment)

from a qualitative point of view. Several cycles of development of the

computational model and listening tests may be required to refine it.

The musicians team helps the researchers assess the quality.

• After the computational model has been agreed upon, it must be popu-

lated with parameters and coefficients. Some of them can be computed

or measured (e.g. physics constants), some other must be estimated, e.g.

from acoustic recordings, feature extraction and data fitting, while some

other must be computed in real-time according to some law depending

on user input. Results are evaluated through listening tests by the musi-

cians team. Theoretically speaking, scientific methods should yield very
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good parameter estimation if the hypotheses underlying physics mod-

elling are correct. However, given the number of simplifying hypothesis

that are generally applied to current computationally-feasible synthesis

techniques, a data fit from acoustic recordings may not yield a good es-

timate of the model parameters. Although results may not sound yet

sufficiently convincing a reason not to skip this step is the complexity

of the parameter space. The number of parameters and coefficients is

often very large, depending on the synthesis technique. The parameters

vary in pitch and dynamic, and, thus a first approximation aided by the

computer is necessary.

• The parameters calibration is conducted by the musicians to fine-tune

the automatic parameters estimate in a computer-assisted fashion. In

this process they are helped by some software front-end for calibration.

The musicians are often not technical experts, thus, some complexity may

be hidden behind the calibration front-end to help them focus on their

(often trial and error-based) refinement process.

• Once the computational model is defined, calibrated and implemented in

real-time, a last task for the musicians is to create patches and presets

employing the computational model. This step requires creating different

variations of the model according to different tastes and musical genres

by slight modification of the parameters, supplementary effects, control

or performance modifications (e.g. making a synth preset monophonic,

or relating a control wheel to a certain parameter).

An evaluation and assessment is performed at the end of each cycle, which

can be iterated several times, possibly leading to a refinement of the model,

of the parameters, of the control strategy, or to an improvement or optimiza-

tion of the implementation. As already stated in Section 5.2, algorithms for

real-time MAs can often have very low computational cost, but are non trivial

to implement. In the case of real-time synthesis, the synthesis engine must be

able to allocate a large number of voices. While for some synthesis engine a

single voice may be computationally inexpensive, the contemporary allocation
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of a large number of voices with the same computational cost sums up at least

linearly in terms of system load (unless some factorization technique can be

employed to optimize). Often, however, some system resources are wasted due

to computational overhead, sub-optimal memory bus management, and such,

resulting in a higher than linear increase of system load with an increasing

number of voices. It must be noted, furthermore, that, differently to the as-

sumptions made in papers and tutorials written by unexperienced developers,

the polyphony required by a keyboard instrument must be much larger than

the number of fingers human have, due to:

• the sustain pedal retaining many more voices active,

• voices that are being released but still are not silent,

• layers of voices (multitimbral instruments, unison, etc.).

Although trivial this may be to the accustomed reader, much low quality lit-

erature does not take such basics into account.

In [129], a brief introduction to physics-based synthesis in a commercial dig-

ital piano is provided. The instrument3 implements different algorithms to

emulate acoustic pianos, electric pianos and chromatic percussions. The SP

hardware has been designed to fulfill the worst case computing requirements,

which are those of an acoustic piano model featuring emulation of the sound-

board and resonant strings with full polyphony. The piano features a mesh of

6 interconnected DSPs of the TI OMAPL137 family, featuring a C674x DSP

and a ARM9 microcontroller unit. Another single ARM9 core coordinates the

workload, handles peripherals, I/O, the user interface and transmits synthesis

parameters to the 6 OMAP chips. These share the workload. The voices are

computed in parallel and distributed among 4 C674x, while the soundboard

and the additional effects are computed by the last 2 C674x respectively. In

terms of both parallelization and sound quality, modal synthesis provides a

good approach. While more computationally expensive compared to digital

waveguides, this technique allows for high flexibility of calibration and permits
3http://physispiano.com/
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a more accurate modeling of the nonlinear longitudinal string vibrations which

characterize the timbre in the low acoustic piano register. Additionally, as

already mentioned, it is particularly well suited to code parallelization.

The acoustic piano algorithm is based on the decomposition of the string

displacement y(x, t) into its orthogonal normal modes [130]

y(x, t) =
N∑
n=1

yn(t) sin
(nπx
L

)
, (5.37)

where yn(t) are the instantaneous amplitudes of the modes, or partials. Sub-

stituting Eq. 5.37 into the partial differential equation of the string (Eq. 5.26)

motion results in an ordinary second-order differential equation for each partial,

and thus the impulse response of the string becomes a sum of exponentially

decaying sinusoidal functions.

After discretization, the input-output relation of the string block is realized

as a parallel connection of N second-order all-pole resonators:

Fstring(z) = Hstring(z)Fh(z)

Hstring(z) =
N∑
k=1

Win,kHmode,k(z)Wout,k (5.38)

Hmode,k = b1,kz
−1

1 + a1,kz−1 + a2,kz−2 ,

where Fstring(z) is the transverse force at the bridge, Fh(z) is the force coming

from the hammer and Hmode,k(z) are the transfer functions of the normal

modes. The conversion between the physical variables (i.e. force, displacement)

and the modal variables is regulated by a set of input and output weights

Win,k, Wout,k.

Sound synthesis parameters are organized in a hierarchical way. The user is

presented with a short set of Macro Parameters (hammer, tuning, string type,

resonance, size) which control a larger set of 15 Micro Parameters (e.g. hit

position, string stiffness). These in turn can modify the internal parameters

used by the sound designers, which are around 100 and in some cases can
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be controlled note-by-note. Finally, the last layer of transformation generates

the approximately 300’000 synthesis microparameters which are used by the

real-time engine. With such a large set of parameters, automatic parameter

estimation is necessary, as reported above.

Modal synthesis is particularly useful in this case, as duplex resonators, sym-

pathetic string resonance and soundboard can all be modelled by sets of oscil-

lators. Beating can also be modelled by slightly detuned oscillators, differently

from what was done in the DWG synthesis of the Clavinet, where beating was

implemented by modulated Regalia band-pass filters (although roughly speak-

ing the computational cost can be considered equivalent, the modal synthesis

paradigm increases code scalability and parallelization).

The acoustic piano model, is a good example of a development cycle evo-

lution. A previous model documented in [131], included a feedback hammer

model to excite the resonators. However faithful in sound and close to the

physics of the piano action, after informal evaluation a feedforward approxima-

tion of the original hammer model has been preferred for its improved usability

and a more deterministic response to touch dynamics.

* * *

The development flow diagram in Figure 5.21 includes several iterations in-

cluding listening tests. Every musical instrument manufacturer has its own

procedures and experts to conduct those. However, as the advances in the

fields of acoustics and music computing enable the creation of close-to-complete

models for the emulation of real musical instruments it is worth asking whether

a standard and broadly accepted subjective evaluation method can be adopted

by researchers and the industry for comparison and communication. One of the

current trends in research is very close to that adopted by instruments manu-

facturers: allowing the interested user or reader to listen and judge by himself.

Following this trend, the author published a number of compagnion pages to

published articles dealing with synthesis. It is the case of the aforementioned
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Clavinet emulation4 5 6 7, or the VAF8. Together with audio samples other

materials can be supplied to the reader, e.g. software or data tables to test,

implement and modify the algorithm.

Other researchers, along their works, reported results from listening tests of

many sorts, to evaluate the level of realism of their emulation algorithms. Some

of these works [132, 133] are in the field of sampling technology, while others

[134, 135, 136] are in the field of digital waveguide synthesis. Except from these

works, there has been no effort in the academic literature to propose a uniform

procedure for the evaluation of an emulation synthesis algorithm results. As

the works in the field grow in number, a standard approach to assess the timbre

quality of synthesis algorithms is needed, to allow also a comparison between

different works.

Some more common audio fields have standard procedures to assess the qual-

ity of a work, be it a device, an algorithm, an ambience or the perceived quality

of a product related to another one, in the field of sound synthesis a standard

lacks. In [106], the author proposed a simple method based on subjective listen-

ing tests called R-S. The subjects need to discern real from synthesized tones

of a certain instrument. If the subjects are not able to distinguish between real

and synthesized tone their Accuracy [137] tends towards the perfect guessing

value, i.e. 50%. Other ways to present results are proposed, such as the F-

measure (related to Accuracy), or the ROC (Receiver Operating Characteristic

[138]), which can be used to evaluate results against different synthesis param-

eters. To the researcher or the developer, it is of high importance to evaluate

the ability of an algorithm to be convincing over several dimensions, e.g. pitch,

dynamic, etc. A meaningful way to evaluate results is presenting these in a mul-

tidimensional plot, as shown in Figure 5.22. A 3D plot improves on readability

of the results, and quickly shows potentially weak areas of the computational

model and the employed parametrization. In the example, the surface shows

that the rate of false negatives (synthetic tones classified as recorded tones)
4http://research.spa.aalto.fi/publications/papers/icmc11-clavinet/
5http://a3lab.dii.univpm.it/projects/jasp-clavinet
6http://a3lab.dii.univpm.it/projects/fdtd-adaptor
7http://research.spa.aalto.fi/publications/papers/dafx12-pickup/
8http://a3lab.dii.univpm.it/projects/vaf
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increases for the higher tones and for low and high dynamics, suggesting e.g.

that the model succeeds better in emulating the higher tones and the extremes

of the dynamic range.

Figure 5.22: 3D plot and fitting surface of the rate of false negatives from a
listening test; the plot allows for a quick assessment on the salient
features of the test with respect to two parameters, keyboard range
and dynamic.

While conducting the experiments, it was found that the more questionable

decisions are not related to the metric but to the methodology. The require-

ments of the subjects are critical, as different categories of users obtained very

different results. One assumption often done in some of the aforementioned

academic works, is that subjects with a musical training are sufficient for the

tests. Musical training is generally meant as some years of experience in play-

ing an instrument, or being enrolled in music classes at high school or higher

degree. According the experimental experience, I suggest the subjects must

have years of practice of the instrument to be evaluated, and, if professional

musicians, they must have also technical experience, in order to be able to dis-
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cern artifacts and provide an informed feedback to the developers. In any case

the results should not be averaged over different classes of subjects. Finally, it

is suggested that the test interface, the evaluation procedure, the selection of

sound samples and other aural or visual cues, may have effects on the evalua-

tion procedure. In a comparison between a high-quality recorded tone and a

synthesized tone which has been added with background noise, the subject may

be biased and believe the synthesized tone to be real due to the characteristic

background noise typical of audio recordings.

At the moment a very interesting outlook on conductive informed subjective

evaluation is [139].
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Chapter 6

Future perspectives in Music

Computing and Networked Music

Performance

The scope of this PhD essay is not to obtain a superior technical achievement in

one specific area, or provide a complete overview of a certain computing topic,

but to provide an overview of different topics related to wireless embedded

musical applications, put the acquired knowledge under test, report technical

achievements and development experience, evaluate the outcome to learn and

highlight issues, problems yet to solve and possible future outcomes. This

Chapter is, thus, intended as a relevant part of the essay, and not just a graceful

way to conclude before the final The End screen.

6.1 “What We Must”: Future Works

From the beginning of the PhD studies to the end a great deal of research and

development has been conducted. As usual, however, it is a little-o of what

was planned or desired, especially for what concerns WeMUST as a whole. As

of WeMUST-OS v.0.3 and we-tools RC2, a large number of features are still

missing or have to be fixed. Some items worth pointing out will be illustrated.

No effort has been done yet to evaluate the overhead of the control protocol in

wemust-netdbg or the SABy protocol. As those protocols are extremely simple
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it was not of interest, yet they might be optimized in the near future. The

SABy protocol has been designed taking pace from UPnP and made simpler.

It is a custom protocol and it serves well the intended goals but it is worth

asking whether the goals originally specified are sufficient, and whether it will

gain some spread in other platforms or projects. As to the first question, it

probably needs some cycles of evaluation. The original SABy specifications

require four fields: APP, SR, NAME and TAG. It was targeted to a low-level

C implementation using Puredata and UNIX BSD sockets. While developing

we-tools, other issues did arise, e.g. providing also a period size together with

the sample rate and the number of channels. The period has been added to the

SR item in form of SR:<rate>:<period>. Another question is whether other

features of a node must be included in SABy, such as the IP address and port.

There are other attempts in the music field to provide a protocol for music

networking. A few people have proposed to implement further features in OSC

for service discovery [140], networking and sharing musical objects [141] and

queries1. As long as these efforts are sparse and no clear perspective on the

future of OSC is available it is not suggested to spend more effort on a device

discovery and negotiation protocol.

Besides the networking/interoperability layer, the actual software providing

for connectivity has some limits at the moment. Jacktrip includes resampling

only in the custom version described in the previous chapters, and it will take

time until the changes get to the trunk and the binaries will be accessible to

Linux or MacOsX users. In the meanwhile a promising software, zita-njbridge

from Fons Adriaensen 2, has been released. This software includes a resampling

algorithm slightly different from the one implemented in Jacktrip and supports

IPv6. Its computational cost, being based on the same resampling library is

comparable to that of Jacktrip with resampler but it performs better (at least

on the BBxM) due to a lower number of calls and SW layers, not relying on the

QT library. Zita-njbridge is not bidirectional, and to adaptWeMUST to employ

it requires reworking in order to ensure a bidirectional connection. It must

1Schmeder-Wright, MrRay, OSNIP, Minuit, QLAB, libmapper, oscit, to name a few
2http://kokkinizita.linuxaudio.org/linuxaudio/index.html
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be noted, however that some bandwidth is spared when just a unidirectional

connection is required, allowing for more flexibility.

WeMUST-OS only supports the BBxM as embedded platform. As the time

passes by, new more performing development boards will come out, which will

draw the attention of the users. Some of these platforms should be supported

by WeMUST-OS, in order for more users to experiment with WeMUST.

Finally wireless communication has been tested for a small subset of use

cases. Much more data must be collected in order have a last word on the real

feasibility of 802.11 for wireless NMP. Moreover, since AES67 [49] seems to

be the future reference for digital audio networking, a 802.11 link or multiple

nodes scenario should be tested to conclude on the feasibility of wireless NMP

on 802.11 networks. It is probably needed to configure the network properly

at the physical level (e.g. data rate) and the medium access level to avoid

collisions.

6.2 Looking Forward: Trends and Technologies

6.2.1 DSP Architectures

In the last three or four years the mobile revolution has shaped the consumer

market in many regards. It suffices to say that, at least in Italy, many TV

commercials convey slogans and key information on the screen of a tablet, or

feature touch-screen gestures to scroll between items. Besides the paradox of

watching a screen in a screen, and the fact that this proves not only trendy, but

even attractive 3 , it also produces money. The mobile market has an impact

on the aesthetics of advertisement, and perhaps very subtly also on the minds

of the commercial representatives of many silicon companies. As a matter of

fact, devices that in the past were industrial-grade, such as a home thermostat

or a key lock, are now getting smart (or more precisely smartphone-ized), i.e.

of a shiny design, social, and interconnected4. Or, another example, products
3in an erotic way as the Italian philosopher Umberto Galimberti put it in “I vizi capitali e
i nuovi vizi”, Feltrinelli, 2007.

4see e.g. https://nest.com/ or http://august.com/
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that are based and revolve around a hardware component, such as an electric

energy monitor, base all their website advertisement on a smartphone, the

cloud services and the fancy graphical aspects of its interface, leaving just one

picture of the actual device and without even mentioning hardware technical

specifications 5. Economic cars, that were made to transport people (Fordism,

anyone?) are nowadays made to entertain people. And many more example

could be devised. It remains unknown whether this social trend is emerging

because technical requirements are met at lower costs and there is an extra

available to invest on the fun part, or either because quality is such an unknown

to consumers that it does not really matter whether technical requirements are

met.

The impact of the mobile market does not only reflect on society and econ-

omy, but also on the silicon industry. In the last few years, new ICT products

emerged for the mobile market, which are adopted by millions of users. This

means that by adopting these components, some advantage can be gathered...

provided one has a sufficient reputation in the market to obtain a quote. Re-

garding embedded processors, some SoCs are nowadays manufactured which

are apt to signal processing and are meant for the multimedia and the mobile

market. The question is: are these SoC the future platforms for DSP in MAs?

Or even more bold: are MAs migrating from embedded hardware to mobile

platforms?

There are signs in the market of a shift from discrete DSPs to integrated

SoCs based on RISC processors powered by floating-point arithmetic units or

co-processors for audio, video, multimedia, wireless baseband DSP and such.

This change is triggered by the impact of mobile market pressure on the silicon

industry to increase performances and reduce costs. The same pressure brought

to a standardization of the architectures and the operating systems, to facilitate

reuse of HW and SW IPs. The reuse of SW and code is of interest, as PC

software for MA could be ported to embedded instruments, simplifying the

development, as with the piano model in [131] implemented as x86 code and

later ported to TI OMAP DSP [129].
5http://www.smappee.com/
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Mobile SoCs however feature a set of peripherals and cores that are not of

interest for most MAs, such as LTE, NFC connectivity, GPS, security accel-

erators, graphic accelerators, camera input, etc. All these units increase the

cost, the silicon area and are ever improved, meaning that the manufacturer

will charge for the cost of their development.

While digital instruments require an Operating System, a nice GUI and many

digital I/O, including - as in WeMUST - wireless connectivity, it is questionable

whether shifting all the DSP to a general purpose unit with extra unused

features represents a valid choice and whether computational requirements are

met just by these processing cores, while in the past they were barely met by

dedicated DSPs. It must be noted that, on the other hand, ARM IPs can be

throttled up over the 1-GHz clock speed, while discrete DSP chips of same

price6 are still running at around 300-400MHz in many cases. A SIMD engine

is available on all the current Cortex-A cores, which allow parallelism, and

a floating point instructions are included to speed-up floating point calculus.

Benchmarks reported in Section 2.3 suggests that ARM platforms could be

viable for challenging DSP tasks, provided that the solution is robust enough

to real-time critical tasks.

Other concerns for the use of ARM SoCs in the music industry are not

technical in nature. First of all: support. SoCs targeted at the mobile world

are intended to live short, as the handsets that host them, thus, support is

guaranteed for very short periods, generally 2 years, while musical instruments

can and should last for decades and be able to be serviced or repaired years

later. The other concern regards pricing and availability. As the mobile ARM

SoC market is at the moment dominated by Qualcomm7, and other IP buyers

such as Samsung, Broadcom, Apple, Marvel, Allwinner, Mediatek, etc., that

6as a reference: as of January 2015 a previous generation 450 MHz C674x chip is officially
quoted $13 to $17 per 1,000 units depending on the specific product and package, while the
least performing 1250 MHz C667x is quoted $79 to $118 per 1,000 units. Mobile ARM-
based SoC can cost around $20 for a 1.5GHz Qualcomm Snapdragon 600 APQ8064T
Quad-Core to $30 for a 1.6GHz Samsung Exynos 5 Octa 5410 (according to an iSuppli
research conducted in March 2013, https://technology.ihs.com/430692/samsung-galaxy-
s4-carries-236-bill-of-materials-ihs-isuppli-virtual-teardown-reveals )

7in H1 2013 it was ramping over to surpass Imagination Technologies PowerVR IP
http://gfxspeak.com/2013/09/25/qualcomm-leads-mobile-gpu-market/
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sell only for large numbers, the availability of high-performance SoC for non-

mobile applications is at stakes.

As pointed out by some market researches the DSP industry is favoring hy-

brid SoC solutions mixing RISC with specialized DSP cores, instead of discrete

DSP IC. This is surely a question of both market trends and technical and

production aspects. First it is questionable whether FLOPS promises have

been maintained. While in an IEEE report [142] dated 2000, Gene Frantz, of

Texas Instruments, forecasted DSPs by 2010 to have 50,000 MIPS8, at the time

of writing TI has a family of DSPs (C66x) capable of 22.4GFLOPS per core

at 1.4GHz (or double the number of MACs). However, TI Keystone II SoC

include up to 8 DSP cores (and up to 4 Cortex A15), hence parallelism can

drive performances to theoretical 198 GFLOPS (up to TI documentation). All

this performance come at a cost: 160 US$ per 1,000 units, at least one order

of magnitude higher than previous generation C67x DSPs (which is rated at

2.7 GFLOPS, i.e. one order of magnitude lower performance). Although the

Keystone II generation of SoC also include additional accelerators for security

and network packets to improve connectivity functions it does not include all

the feature of mobile SoCs, probably due to TI decision to leave the mobile

market in September 20129 (which in 2006 was 80% of the DSP sales, i.e.

35% of the whole company revenues 10). TI is one of the leading companies

in discrete DSP. Other companies being Analog Devices (which according to

the internal company Annual Investors Reports has a stable 9% revenue from

the DSP market11) and Freescale Semiconductors, formerly Motorola. Despite

number crunching is as useful as ever, DSP chips are only a small portion of the

DSP silicon market: 10% (as of Nov. 2012) 12. Indeed, a number of DSP intel-

8In an article from electronicdesign.com Frantz is quoted having promised 3 Tril-
lion Instructions per Seconds by 2010, which however is in strong contrast with
the 50,000 MIPS figure reported in the IEEE report. The article can be
found online at http://electronicdesign.com/dsps/tis-dsp-roadmap-promises-3-trillion-
instructions-second-2010

9according to Forbes http://www.forbes.com/sites/greatspeculations/2013/03/28/heres-
why-texas-instruments-stock-is-worth-35/

10according to Plunkett Research Ltd. “Plunkett’s Outsourcing and Offshoring Industry
Almanac 2008”

11http://investor.analog.com/annuals.cfm
12https://fwdconcepts.com/dsp-market-bulletin-111212/
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lectual properties (IP) are nowadays embedded in SoC in form of accelerators

or supplementary cores. This is the case of CEVA13, an established DSP IP

company. CEVA cores are specific to baseband communication, and since 2011

it seems to be the most employed architecture for mobile connectivity, being

shipped with a rate of 1 Billion units per year (in year 201314). Hexagon cores,

developed and produced by Qualcomm, ship with Qualcomm Snapdragon SoCs

since 2006 to assist either the Modem subsystem or the Multimedia subsystem

of the SoC. It is estimated that 1.2 billions Hexagon cores were shipped in 2011

inside Qualcomm SoCs.

Despite the mobile market being the most important field for DSP appli-

cation (in terms of sales), and despite its large growth, in the past there has

been a large deal of retreats from the market, selling and fusion of DSP chips

manufacturers 15. As the discrete DSP ICs market is shrinking, new solutions

for DSP may be worth evaluating. A last, radical question needs be expressed:

should musical applications migrate to custom embedded hardware based on

ARM or similar SoCs, or should the mobile platforms be the target for embed-

ding musical applications and make out into the tangible world?

6.2.2 Wireless Networked Music Performance

Issues with wireless NMP are twofold: at the lower level, access to the medium,

range, bandwidth and interferences of existing standards need to be modified

to specifically target this application; at the top level, a data presentation stan-

dard, session negotiation and control need a standardization. The first aspect

requires a large effort from developers, manufacturers and users groups, and

the question is whether these different actors will ever join to introduce new

features in the current standards for NMP and similar applications. In MAs

the solutions are often simple to implement, as it is the case with audio pro-

cesses scheduling: for concurrent transmission of multiple audio packets in a

13http://www.ceva-dsp.com/
14EE Times Asia http://www.eetasia.com/articleLogin.do?artId=8800667242
15see e.g. years 2007-2009, with Agere cellphone chips sold to Infineon, Analog Devices

cellphone chips sold to Mediatek, TI and Freescale dumping their 2G/2.5G products,
https://fwdconcepts.com/dsp-market-bulletin-5409/
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short time frame a time-slotting mechanism could be employed. Several TDMA

(Time Domain Multiplexing) algorithms are implemented in the Mikrotik de-

vices described in Section 4.7 as an alternative to standard 802.11 medium

access policies. Besides the medium access, some other problematic aspects of

802.11 are:

• the high frequency of operation has a reduced range. The sub-1 GHz

range would be suited to longer transmission range. Currently available

transmission standards in the 860-930 MHz range, unlicensed in most

countries, have channels with narrow bandwidth, limiting the information

that can be coded on a channel

• the number of potential interferers in the 2.4 GHz and 5 GHz ISM bands.

• the need for integrated antenna with a wide range, potentially improved

by adaptive beamforming,

At the application level, an effort is required from many software developers

to follow one standard. The main aspects that need be shared between different

software implementations are:

• a metadata structure that includes all the relevant audio parameters,

to assess feasibility of the audio link, instantiate a resampler if needed,

allocate the proper audio buffer size, etc.;

• a set of header and payload structures for audio exchange: most audio

software (netsend, jacktrip, AUnetsend, netjack, etc.) exchange audio

in similar ways, but the packet header, numeric data representation and

interleaving are slightly different;

• a negotiation protocol to exchange the metadata, negotiate audio link

features and establish a connection;

• a session control protocol; it can be drawn from existing protocols but it

needs adoption by all NMP audio softwares.

At the moment, all these aspects are covered by the AES67 standard [49].

Implementation in existing software could solve the aforementioned issues.
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The AES67 standard also provides for a minimum set of requirements in

terms of latency and audio packet size. Those requirements are 48kHz, 24-bit

sampling, 48 samples per period and 3 periods per buffer. This means 3 ms

buffer time. With network delay ≤ 3ms an AES67-compatible transmission

could be done.

6.2.3 Digital Signal Processing for Musical Applications

More than 40 years have passed since the first proposal for a physics-based

digital synthesis technique [113]. The computational models evolved and many

formulations have been devised that yield a vast computational cost reduc-

tion, making it feasible to implement these into personal computer software

and commercial musical instruments. The complexity of these models is ever

increasing, to match the need of the experienced musicians, and thus the num-

ber of parameters and the accuracy of their tuning gets more critical. Perhaps

other traditional techniques, more faithful to the physics of the system, such

as Finite Differences and Wave Digital formulations, may ease this problem.

While, in fact, techniques such as DWT or modal synthesis require a psychoa-

coustic match of the emulated tones to the real instrument ones, the FDTD

and WDF adhere to the physics of the system and therefore can provide faithful

emulation by matching the physical constants and properties of the material

and components involved in producing sound. At the moment such techniques

are relegated to off-line usage. The FDTD is successfully experimented by

Stefano Bilbao and his colleagues on high performance general purpose GPUs

[11], and it is possible that in future real-time FDTD synthesis will be viable,

thanks to the availability of GPUs on personal computers and mobile devices.

Besides the mere computational aspects, parametrization and faithfulness

are fundamental aspects in sound synthesis. The palette of synthesis tech-

niques is so large at the moment, that a sound designer or a musician can meet

a goal with ease, given valid tools. He, or she, can generate a desired sound

drawing from a great deal of techniques: subtractive, additive, frequency or

phase modulation, waaveshaping, wavetable, sampling, granular, vector phase
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shaping [143], and of course all the aforementioned physics-related ones. The

general interest, thus, tends towards the use and the control of the available

tools. With the processing power available nowadays there are also little to

none literature contributions in terms of optimization, while optimization is

a key factor in implementing ever more complex physical models on available

processors to increase the level of realism in the emulation. One point emerged

from informal discussion with academic colleagues at computer music confer-

ences on the topic. Generally, the interest of these academic communities is not

related to realistic emulation. The professional music market, on the other side,

is not anymore in search of bright inventions, on the opposite the revival of a

vintage trend in popular culture can be clearly seen. A recent music magazine

article emphasizes on the steady growth of the analog modular synthesizers16:

”There’s a huge new corner of the upstairs main hall that’s been taken over by

10-15 independent modular synthesis companies, many of whom we’ve never

seen showing gear at NAMM before. They banded together to rent out a large

swath of the convention floor, setting up right next to each other with stations

demoing their latest innovations. [...] We’ll see how much modular gear starts

to make it into the mainstream music production culture in the next year, but

this was a clear indicator that there’s an analog storm coming. The increasing

attention towards analog electronics or digital reproduction of vintage instru-

ments pushes the attention towards virtual analog modelling, a very mature

field, both industrially and from a research standpoint.

It is hard, thus, to point out what the upcoming trends will be. There are

many open issues in understanding the acoustics of stringed instruments, per-

cussion instruments, especially related to nonlinear effects. Some mathematical

tools could be needed to handle large parameter spaces for model tuning. Per-

haps sparse coding methods will compress the parameters space, also reducing

the cost of calculating these and the bandwidth necessary to communicate

these during real-time synthesis to parallel processors. Finally, the quest for a

rational assessment method for physical models is open, and is of the highest

16from http://www.djtechtools.com/2015/01/26/the-djproducer-nammies-best-of-namm-
2015
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interest, since it is related to aspects of lesser technical nature, which are fun-

damental for the steady development of the music market and the definition of

contemporary music culture.

6.3 Conclusions

This thesis is meant as a personal milestone in music technology research and

development. One goal of the works conducted even before the beginning of

the PhD studies was to bridge a gap between academic research and industrial

development, with the secret hope to see one day the zealous local research

community foster a renaissance of the once-prolific instrument manufacturing

industry of my region. While we won’t hear anymore the sound of housewives

tuning accordion reeds at home, we could still see a number of SMEs creat-

ing and crafting novel musical instruments for the digital age exploiting global

technologies and local expertise and taste. For this reason, many different

topics, issues and arguments are conveyed in such a - relatively - short text.

Much more remained in my notebooks, anyway. This thesis dealt mainly with

embedded architectures for digital musical instruments and wireless networked

performance. Both topics have needs and issues in common. A part of the

development has been oriented to providing a viable solution for showing that

(a) new SoCs are capable of real-time DSP for MAs and (b) that IEEE 802.11

wireless networking is able to satisfy the needs of NMP. Many issues must be

addressed, still, to increase robustness and obtain compliance with existing

software and protocols. The acceptance of wireless networking in music perfor-

mance is not easily foreseeable in the near future. Of further concern, besides

technical and usability issues there are also public health concerns related to

radiated EM fields. The academic literature still fails to provide a clear answer.

As a final remark: Alexander Carôt, in his PhD thesis, expressed a concept

very clearly: interdisciplinary research is a double-edged sword. Trying to sum-

marize and convey all the research works conducted in more than three years of

music technology research is a hard task. The risk of being generalist or unclear

is high. Both the open-source developers and the academic communities tends
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to underestimate the importance of taking into consideration different issues

at a time. Science is progressing slowly, unable to suggest the intellectuals (do

we have these anymore, or is society mainstream culture lead by starlettes’

Instagram selfies?), to shed light on currently debated issues or to provide a

mainstream cultural outcome. It is hard to tell whether this is due to a critical

mass of analytic knowledge and the lack of comprehensive interdisciplinary ap-

proaches to knowledge and research, or whether, in the rush of quantifying the

research outcome, the academic institutions are losing their ability to produce

highly relevant scientific research. It is a fact that the academic literature is

now a flourishing business for low quality journals and some far east countries

established a very good reputation in assembly line paper writing.

To conclude, in the hope to justify some lacks in the work conducted in the

last three years, part of the day-time (night-time at times17) has been devoted

to other topics not covered here, which were funded by a research grant from

Telecom Italia, and were of help in the development of my engineering abilities.

17intended pun
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